Physics

Select Filters and then click Apply to load new results

Term
Time & Day Offered
Level
Credits
Course Duration

A Brief Introduction to Astronomical Observing — PHY2212.01

Instructor: Hugh Crowl
Days & Time: M/T/W/Th/F/Sa/Su 7:30PM-9:20PM
Credits: 1

In this course, students will learn the fundamentals of observing the night sky with a telescope. This course will teach how to find the basic constellations and how to use both manual and computerized telescopes to point at celestial objects in the night sky. While there will be some classroom time to teach fundamental concepts, the vast majority of the class will consist

Advanced Observing Projects — PHY4236.01

Instructor: Hugh Crowl
Days & Time: TBA
Credits: 2

Students will observe using the telescopes at Stickney Observatory for a series of astronomical observing projects. After a range of initial assigned projects designed to acquaint students with the capabilities of the observing equipment and astrophysically interesting observations, students will propose and carry out their own observing projects looking at astrophysical

Electronics Lab — PHY2213.02

Instructor: Hugh Crowl
Days & Time: MO 1:40pm-5:20pm
Credits: 2

This course will serve as an introduction to working with circuits in a lab setting. We will learn about the relatively simple rules necessary for working with analog circuits and how those rules can be used to build objects of growing complexity. We will then move on to understanding how to build circuits that can measure properties of and interact with their

Energy, Environment, and Climate — ENV2120.01

Instructor: Tim Schroeder
Days & Time: MO,TH 3:40pm-5:30pm
Credits: 4

The comforts and amenities of modern life require vast inputs of energy to power an industrial society. While the benefits of industrial society are significant, if unevenly shared, the environmental costs of energy extraction and production are significant. These environmental costs are also unevenly shared. This course will cover the

Newton's Principia: On the System of the World — MAT4161.01

Instructor: Andrew McIntyre
Days & Time: TU,FR 8:30am-10:20am
Credits: 4

I would (and will) argue that Newton's Principia is the most important book yet written. It is certainly the most important book that a vanishingly small number of people have actually read.

Written about 150 CE, Ptolemy's Almagest collected and systematized the knowledge of astronomers of the time to give a system which roughly predicted the

Physics I: Forces and Motion (with Lab) — PHY2235.01

Instructor: Hugh Crowl
Credits: 5

Physics is the study of what Newton called “the System of the World.” To know the System of the World is to know what forces are out there and how those forces operate on things. These forces explain the dynamics of the world around us: from the path of a falling apple to the motion of a car down the highway to the flight of a rocket from the Earth. Careful analysis of the

Physics II: Electricity and Magnetism (with Lab) — PHY4327.01

Instructor: Tim Schroeder
Days & Time: MO,TH 10:00am-11:50am
Credits: 5

How does influence travel from one thing to another? In Newton’s mechanics of particles and forces, influences travel instantaneously across arbitrarily far distances. Newton himself felt this to be incorrect, but he did not suggest a solution to this problem of “action at a distance.” To solve this problem, we need a richer ontology: The world is made not only of particles,

Robotics and STEM Education: A Workshop — EDU2107.01

Instructor: Hugh Crowl
Days & Time: FR 10:30am-12:20pm
Credits: 1

In this course, students will gain experience with using simple programmable robots and how they can be utilized in STEM education. The focus of this class will be on learning and designing lessons for K-12 students utilizing these robots. This class is accessible for students at all levels of computer programming experience (including none). 

Scanning Electron Microscopy Research Methods — ES4107.01

Instructor: Tim Schroeder
Days & Time: TU 2:10pm-4:00pm
Credits: 2

Scanning electron microscopes are a fundamental tool in the physical and life sciences. When equipped with an X-Ray spectrometer, a SEM can provide rapid physical and chemical data of specimens on extremely small scales. This class with cover the theory and practical applications of SEM imaging and analysis for advanced science students who have their own

Stars and Galaxies — PHY2106.01

Instructor: Hugh Crowl
Days & Time: MO,TH 10:00am-11:50am
Credits: 4

All but a handful of the objects you see in the night sky are stars in our Galaxy, the Milky Way. Although we know about these stars only from studying their light, we know today that they are not just points of light, but large, gravitationally‐bound balls of plasma governed by the laws of physics. Stars, together with dust, gas, and dark matter,

The Physics of Light and Color — PHY2114.01

Instructor: Hugh Crowl
Days & Time: TU 8:30am-12:10pm
Credits: 2

The physics of light and color initially appears simple: light is a wave and the wavelength of light determines color. While this basic physical description of light is easy to state, going deeper quickly opens up large range of questions. How do different wavelengths of light combine to make colors? How does light from different sources interfere? How does light change path

The Physics of Sound — PHY2278.02

Instructor: Hugh Crowl
Days & Time: TU 8:30am-12:10pm
Credits: 2

Physically, sound is simply the compression of air around us. However, this relatively simple description obscures a much richer understanding of sound. From how different sounds are generated and perceived to how different sounds can combine to make something new to how to design acoustically pleasant spaces, the physics of sound plays a key role. This course is about the