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ABSTRACT
Mammals usually produce approximately equal numbers of

sons and daughters, but there are exceptions to this general rule,
as has been observed in ruminant ungulate species, where the
sex-allocation hypothesis of Trivers and Willard has provided a
rational evolutionary underpinning to adaptive changes in sex
ratio. Here, we review circumstances whereby ruminants and
other mammalian species, especially rodents and primates, ap-
pear able to skew the sex ratio of their offspring. We also discuss
some of the factors, both nutritional and nonnutritional, that
potentially promote such skewing. Work from our laboratory,
performed on mice, suggests that age of the mother and mater-
nal diet, rather than the maternal body condition per se, play
directive roles in controlling sex ratio. In particular, a diet high
in saturated fats but low in carbohydrate leads to the birth of
significantly more male than female offspring in mature labo-
ratory mice, whereas when calories are supplied mainly in the
form of carbohydrate rather than fat, daughters predominate. As
the diets fed to the mice in these experiments were nutritionally
complete and because litter sizes did not differ between treat-
ments, dietary inadequacy seems not to be the cause for sex-
ratio distortion. A number of mechanisms, all of which are test-
able, are discussed to provide an explanation for the phenom-
enon. We conclude the review by discussing potential implica-
tions of these observations to human medicine and agriculture.

early development, embryo, embryonic development, fertiliza-
tion, nutrition and pregnancy, sex allocation, sex ratio, tropho-
blast, uterus

INTRODUCTION
Darwin surmised that some animal species can exhibit

statistically significant shifts in the proportion of sons and
daughters that are born, although the conditions and un-
derlying mechanisms that prompt these changes were and
still are, for the most part, unclear. In insects, reptiles, and
birds, sex-ratio adjustments in response to food availability
and other environmental factors, e.g., extreme sex-ratio
skewing due to male-selective killing by Wolbachia infec-
tion in the Samoan butterfly Hypolimnas polina have long
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been characterized [1–5]. This work has contributed greatly
to evolutionary theory, even to the extent that the experi-
mental data can be fitted accurately to mathematical pre-
dictions [6–9]. It is now clear that the male-to-female sex
ratio at the time of conception (primary sex ratio) and the
secondary sex ratio at birth can be strikingly skewed from
the theoretical 1:1 expected ratio [reviewed in 10, 11]. In
the sections that follow, we first review the evidence that
adaptive adjustments in sex ratio of offspring occurs in
mammals in response to diet and report on some of our
own experimental findings in the mouse. We conclude by
discussing some of the mechanisms that might be respon-
sible for skewing sex ratios.

Significance of Gender Differences at Birth
and the Trivers and Willard Sex-Allocation Hypothesis

Trivers and Willard [12] pointed out that, in polygynous
species, a small proportion of males, usually ones that are
larger and more aggressive, share most of the lifetime re-
productive success, while lower ranking males often father
no offspring at all. By contrast, the majority of females,
irrespective of their social rank and body condition, become
pregnant through mating to this select group of males. In
such species, fathers often play little part in rearing the
young. The sex-allocation hypothesis of Trivers and Willard
predicted that females in the best body condition would
tend to produce offspring the gender of which favors the
sex of greater variance, namely males. Their sons would
benefit from greater parental investment and most likely, as
adults, join the elite group of breeding males. As a conse-
quence, such females are likely to pass on their genes to
more of their grandchildren. Conversely, females lower in
the social structure or in poorer body condition would be
anticipated to invest more in female progeny because their
daughters, rather than their sons, are likely to have greater
lifetime reproductive success. The greater variance of males
in polygynous species, both in terms of early mortality and
reproductive success, is well established in wild popula-
tions. Males born to high ranking/better fed females may,
in turn, have greater reproductive success than their con-
temporaries [13, 14]. Such a correlation seems also to hold
true for mice, where larger males are more attractive to
females than small males [15], and males born to food-
deprived mothers are generally smaller as adults than males
born to females fed ad libitum, even if such variance is not
evident when they are born [16]. Moreover, males born to
food-deprived female mice are more likely to lose agonistic
encounters than sons born to control-fed females [17]. De-
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TABLE 1. Relative energy content (Kcal %) of major nutrients in mouse
diets.

Diet
D12450Ba

(LF)
D12492a

(VHF)
Purina 5015b

(CLC)

Protein 20 20 18

Carbohydrates
Starch
Maltodextrin
Sucrose

31
4

35

0
13
7

51
NS

1
Total carbohydrates 70 20 56

Fats
Soybean oil
Lard

6
4

6
54

NS
NS

Total fat 10 60 26
a Defined Research Diet (Research Diets, Inc., New Brunswick, NJ) with
equivalent amounts of casein, cellulose, minerals, vitamin mixes [31].
D12450B diet had a caloric density of 3.8 kcal/g, D12492, 5.2 kcal/g.
b Purina Complete Life Cycle (CLC) 5015 diet, 4.4 kcal/g. (Purina Inc., St.
Louis, MO.) NS, Not specified.

TABLE 2. Weight at conception, litter size, gestation length, fraction male pups, and number of male-biased litters over four successive pregnancies
in mice maintained on the LF and VHF diets.

Diet Littera
Conception
weight (g)b Litter sizeb

Pregnancy
gestation

length (d)b
Fraction

male pups

Number of
male-biased

litters

LF 1 (n ! 15)
2 (n ! 14)
3 (n ! 15)
4 (n ! 10)

20.8 ("1.4)
26.7 ("2.2)
29.4 ("5.0)
30.8 ("2.3)

9.4 ("1.7)
10.8 ("2.9)
9.1 ("2.3)
9.1 ("4.8)

20.0 ("1.4)
19.8 ("1.4)
19.3 ("1.5)
20.0 ("1.4)

0.48
0.45c

0.35d

0.38c

3
4
1
0

VHF 1 (n ! 16)
2 (n ! 15)
3 (n ! 14)
4 (n ! 9)

23.1 ("2.2)
30.6 ("4.3)
35.7 ("5.9)
38.0 ("5.8)

9.5 ("2.0)
10.7 ("2.8)
9.9 ("2.3)
8.6 ("4.3)

19.6 ("2.1)
18.8 ("1.9)
20.0 ("1.2)
19.9 ("1.5)

0.51
0.66d

0.65d

0.71d

10
12
12
7

a Cannibalism, death of three females, and failure of some females to conceive account for the reduced litter numbers over the course of the study.
b Values for maternal weight at conception, litter size, and pregnancy length are means, with SD provided in parentheses to indicate extent of variability.
c,d Sex ratio deviated significantly from 0.5; P # 0.05c; P # 0.01d.

spite the fact that the Trivers and Willard hypothesis [12]
has often been liberally and sometimes overinterpreted, that
some sex-ratio skewing may be nonadaptive, and that there
is much literature that is conflicting [13, 18–21], the hy-
pothesis has provided a useful theoretical framework to be-
gin to study sex-ratio deviation.

Maternal Nutrition and Sex Ratio of Offspring
in Various Species

This section will discuss what is known about how nu-
trition of the mother can affect the sex ratio of her progeny,
first in the large artiodactyl species, second in rodents, es-
pecially mice, and finally in other animals.

Large ruminants. The prediction that females in better
body condition would produce more male than female
progeny has been observed in red deer [14, 22, 23], roe
deer [24], mature ewes [25], reindeer [26], Barbary sheep
[27], domestic pigs [28], and a number of other species,
although there are exceptions [13, 29]. Dairy cows, but not
heifers, on a high plane of nutrition give birth to propor-
tionately more bull than female calves than cows on a poor-
er diet [30]. Repeat breeder cows, i.e., ones that have prob-
lems becoming pregnant by artificial insemination, also
tend to produce more males [31]. The data on roe deer [24]
were obtained with farmed animals on a diet controlled for
low- and high-energy intake by varying the oil content. In
that study, 75% of the calves born to the high-energy does
were male, while the low-energy group produced only 46%

males. Most other studies have been performed on wild
populations, which are less well-controlled.

Rodents. There have been surprisingly few studies aimed
directly at testing the Trivers and Willard hypothesis [12]
in mice, although there are several reports that are consis-
tent with its applicability in this species. Numerous studies
have shown that maternal nutrition, particularly a diet that
is inadequate, can affect litter size and viability [16, 32–
34]. Rivers and Crawford [32] fed mice either a low-fat or
control diet. Females on the low-fat diet had litters with a
significant sex-ratio distortion ($1:3, males:females) rela-
tive to controls, where the sex ratio was 1:1. Females on
the low-fat diet also had smaller litters, suggesting that
there had been selective loss of male embryos or fetuses.
Drickamer [33] noted that dominant female mice could ap-
propriate more food than lower ranking females and pro-
duced a greater proportion of male-biased litters. Meikle
and Drickamer [34] found that both wild and laboratory
mice deprived of food 1 wk before mating produced fewer
males than control wild and laboratory females. In a follow-
up study, Meikle and Thornton [16] showed that intermit-
tent feeding of wild mice both prior to and during gestation
gave female-biased litters relative to controls. Food restric-
tion of female rats results in a skewing of offspring sex
ratio, which has been attributed to a decrease in uterine
glycerylphosphorylcholine diesterase activity [35]. In rats,
a maternal diet high in sodium and potassium but low in
calcium affects the sex ratio of offspring [36, 37]. Interest-
ingly, hamsters dosed with caffeine have significant skew-
ing of the sex ratio toward females [38], speculatively at-
tributed to inhibition of cAMP phosphodiesterase activity.
In our experiments, we chose to examine the effects of

two defined, nutritionally complete diets [39; Table 1],
which differ primarily in their sources of energy, on the sex
of offspring born to female NIH Swiss mice [39]. Diet 1
was low in saturated fat (LF), with the majority of calories
provided as sugars and complex carbohydrate. The second
was very high in saturated fat (VHF), with 54% of its en-
ergy provided as lard (Table 1). The goal was to determine
whether these diets could influence the sex ratio of pups
born.
NIH Swiss mice maintained on the two diets from 30

days of age delivered four successive litters of pups after
being bred at approximately 10, 20, 28, and 40 wk of age,
resulting in 1048 young born over 108 pregnancies (Table
2). The effects of diet on litter size, maternal weight, ges-
tation length, and sex ratio were tested by using a mixed
model procedures with a repeated measures design [40, 41].
Because each female had multiple correlated records within
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TABLE 3. Effect of diet on sex ratio of first litter born to mature mice, aged 20–27 wk before breeding.

Diet
Conception weight

(g)a Litter sizea
Gestation length

(d)a Sex ratio

No. of
male-biased

litters

LF (n ! 14)
VHF (n ! 11)

31.0 " 4.9b

41.4 " 7.4b
9.2 " 3.6
9.1 " 3.4

20.4 " 1.5
20.4 " 1.7

0.38c

0.64c
2

10
a Values for maternal weights at conception, litter size, and gestation length are means " SD.
b Mothers on VHF diet were significantly heavier (P # 0.001) than ones on LF diet.
c Sex ratios deviated significantly from 0.5 (P # 0.05).

treatment, the pooled variance of values for the females in
the two treatments was used to determine the effect of the
diets. Parity and treatment by parity interactions were tested
with residual error.
Sex ratio (fraction of male pups) for the VHF and LF

groups was tested against the expected value of 0.5 by us-
ing a t-statistic [42]. Gestation length ($20 days) and litter
size ($9 pups) did not differ between the VHF and LF
groups and did not change as the mice aged, although the
mice did become progressively harder to breed. The sex
ratio of pups (fraction of males) born to mothers on the
VHF diet was unusually high (0.67) and to the mothers on
the LF diet very low (0.39), spanning litters 2–4. Impor-
tantly, this skewing of the sex ratio was related to the diets
fed and not to the individual weights of the mothers.
Mice that were first bred at 10 wk of age delivered sim-

ilar numbers of sons and daughters, whereas virgin mice
bred later than 20 wk of age produced pups for which the
sex ratio was skewed according to diet (Table 3). The ex-
periments showed that the source and possibly amount of
calories provided to mature female mice on a nutritionally
complete diet can influence sex of offspring born and are
consistent with the Trivers and Willard sex-allocation the-
ory [12]. The second set of experiments, which employed
older females, clearly showed that age of the mother rather
than parity order affected offspring sex ratio. Only mature
females showed a significant response to the diets in terms
of the sex of the offspring they produced.

Marsupials. Austad and Sunquist [43] performed an ex-
perimental field study with the American opossum (Didel-
phis marsupialis), in which randomly selected females had
their diet supplemented with sardines. The provisioned
group produced a male-biased sex ratio of pouched young,
while the controls produced males to females in about the
same number. This study is of particular interest because,
in opossums, the young make their way to the pouch within
14 days after conception so that sex selection must occur
early in development. Also, the supplement was high in
lipid and rich in n-3 essential fatty acids, which has been
suggested to influence sex ratio toward males in humans
[44].

Primates. Although in most societies, humans are not
generally considered to be polygynous, retrospective census
studies have indicated significant, although somewhat in-
consistent, changes in sex ratio associated with particular
socioeconomic conditions, geographic areas, and social
groupings [45–48]. Crawford et al. [44] speculated that a
high content of essential fatty acids in the diets of pregnant
females favors boys and suggested that male fetuses are
more susceptible to fatty-acid deficiencies than females.
Williams and Gloster [49] concluded that a there is a pos-
itive correlation of male births and food availability, and
that if caloric availability declines, so does the male to fe-
male ratio, although the changes are generally quite small
and certainly not of the magnitude noted by us for mice.

A large group of African women, most of whom were mal-
nourished as determined by their height and weight, for
example, produced more daughters than sons [50]. A study
examining birth rates of women from rural Ethiopia also
demonstrated that a positive correlation existed between
women who were in better nutritional state, as determined
by body mass and muscle indices, and percent of male
births [51]. Analysis of over 10 000 children born in Mo-
dena, Italy, revealed that thinner mothers were less likely
to give birth to sons [52]. In humans, males appear to have
higher in utero caloric demands than females [54]. Vulner-
ability of male offspring to in utero malnutrition and other
environmental stressors might, therefore, have arisen
through natural selection, by maximizing the mother’s re-
productive success, so that she tends to give birth to the
more energy-demanding male offspring during auspicious
environmental cycles [53].
Male births have also been loosely correlated with a

masculine phenotype of the mother, high estrogen and an-
drogen levels at the time of conception, and android pat-
terns of fat distribution in women [55, 56]. As in rodents,
electrolytes within the pregnant mother’s diet might also
affect sex ratio in humans [57].
Studies on sex-ratio biases in nonhuman primates, many

of which are polygynous, have been as controversial as
those with humans [14, 58], and many of the outcomes
noted have been obtained on small sample sizes where sto-
chastic variation can easily lead to erroneous conclusions
[58]. High-ranking females of some species tend to produce
mainly males, but in others, e.g., baboons, the opposite oc-
curs, and thus, another hypothesis, that of the advantaged
daughter has been proposed because daughters of high-
ranking females tend to inherit the elite social status of their
mothers [14, 59]. Indeed, the complex social structure and
intensity of competition for local resources in primate pop-
ulations means that the predictions of Trivers and Willard
[12] would likely not apply in many instances. Neverthe-
less, it still seems likely that nutritional status of the mother,
and the cost of reproduction, play a significant role in ad-
justing sex ratios among primates [58].

Possible Nonnutritional Causes of Sex-Ratio Skewing

Distortions in the sex ratio have been attributed to fac-
tors other than nutrition of the mother [see 14]. In rodents,
females stressed in some manner tend to produce fewer
sons than nonstressed females [60–65]. Housing pregnant
females under crowded conditions reduces sex ratio (frac-
tion of male offspring) [63], while mating at first postpar-
tum estrus tended to produce more males [66]. When sub-
ordinate female hamsters are paired with dominant females,
they produce smaller litters and fewer sons than their dom-
inant counterparts [64]. Treating such subordinate females
with either dexamethasone [64] or progesterone [67] ab-
rogates this stress-induced selective loss of male pups, sug-
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FIG. 1. Proposed preimplantational mechanisms resulting in skewing of
offspring sex ratio.

gesting an endocrine basis for the phenomenon. Parity has
been observed to influence sex ratio of pups born to golden
hamsters [68]. Litter sizes and sex ratio increased until the
third litter and then declined in subsequent litters. For fe-
males bred only once in their lifetimes, male-biased litters
occurred in hamsters aged between 100 and 455 days but
was female-biased in younger and older animals. Body con-
dition and amount of food consumed, which could have
been important variables, were not considered in the statis-
tical models used to analyze the data in any of these studies.
The timing of insemination has long been held to affect

sex ratio in species that ovulate spontaneously, particularly
in livestock [14, 69]. Early studies with rabbits suggested
that fewer male offspring are produced from early matings
[70]. In hamsters, more male births occur if fertilization
occurs late in estrus, possibly as the result of low vaginal
pH [71]. Data from cattle have been mixed, with many
older studies indicating that breeding early in the estrous
period favored females [72]. More contemporary experi-
ments have generally shown little effect of early insemi-
nation [73, 74], but the method used for estrus synchroni-
zation may have influenced the outcome of recent work
[74]. Gutiérrez-Adán et al. [75] presented evidence that, in
cattle, the timing of insemination relative to maturation
stage of the dominant follicle influences sex ratio. More-
over, there is little doubt that, in deer [69, 76] and sheep
[69], early insemination skews the ratio toward females,
while late insemination favors males.
Timing of mating in mice may affect sex ratio in some

strains of mice, but not others [77]. B6/CBA F1 hybrid
mice produce more females when they are mated early and
more males when mating is delayed by a few hours [78].
In addition, the timing of embryo transfer to such mice was
found to skew the sex ratio. If embryos were allowed to
develop in vitro to the two-cell stage and then transferred
to females the morning after they had copulated, i.e., the
embryos were 24 h advanced of the recipients, more female
fetuses resulted, whereas early or synchronous transfers
tended to favor males. The experiments of Jimenez et al.
[78] revealed an additional interesting fact, namely that
late-stage absorptions were essentially randomized between
males and females in the asynchronously bred mice, indi-
cating that selective late-stage abortion could not provide
the basis for the sex skewing.
Not unexpectedly, the effect of timing of insemination

on sex of offspring in humans is unclear. Some studies in-
dicate that more males are born with natural insemination
3 or more days before or 1 or more days after ovulation
[79–83]. However, other results dispute whether timing of
intercourse, artificial induction of ovulation, and artificial
insemination has any affect on sex ratio in humans [84].
Studies of birth rates from preindustrial Finland (1775–

1850) indicate that more sons were born during periods
when adult males declined in the population [85]. After the
industrial revolution, female births began to outnumber
male births in more developed countries. In humans, one
reason for the recent upsurge in female relative to male
births in Western societies may be age of the mother. Gu-
tiérrez-Adán et al. [86] analyzed birth records in Spain from
1945 to 1997 and showed that only two variables—mean
age at marriage and the older age at which women give
birth—correlated (P # 0.01) with the reduction in the ratio
of male to female births. Similar findings, especially for
nonwhites, have been found in a U.S. study [87]. Analysis
of baboon births in Gombe National Park reveals subordi-

nate females had more sons at a younger age, while dom-
inant females produced more sons as they aged [88].
One particularly interesting cause of sex-ratio variation

in rodents arises from the mother’s prior intrauterine posi-
tion [89, 90]. Mothers born between two males (2M) tend
to be masculinized, assume a dominant social role, and pro-
duce male-biased litters, while females born with no adja-
cent males produce litters biased toward females. The basis
of this epigenetic phenomenon is unclear but may be
caused by high androgen concentrations encountered by the
2M females. In light of the above rodent studies, it is in-
teresting to note that women who have high testosterone
levels tend to score high on dominance measure tests and
conceive more sons than those women who score low on
these tests [91–93].
While this review has focused on nutrition and related

factors that can affect offspring sex ratio, it should be rec-
ognized that a multitude of other factors might affect the
primary sex ratio. Examples of additional factors include
sexual behavior, hormonal concentrations, natural disasters,
environmental pollutants, endocrine disrupters, and genetic
factors [11, 63].

Theoretical Mechanisms of Sex-Ratio Skewing

Several hypotheses, none of which have been rigorously
tested, have been proposed to explain skewing of sex ratios
in mammals. These hypotheses are not necessarily mutually
exclusive because more than one mechanism could operate
within a single species, and mechanisms might well vary
between species. The proposed mechanisms fall into two
classes: those that operate prior to conception and those that
favor one sex over the other after fertilization has occurred
(Fig. 1).
1. Sperm of one sex might have differential motility or
make their way more directly to the oocyte than the
other depending on the conditions prevailing in the re-
productive tract of the impregnated female, e.g., state of



1067SEX-RATIO SKEWING IN MAMMALS

cervical mucus, nutrient/energy status of tract secretions,
vaginal pH relative to the precise time at which copu-
lation occurred in relation to estrus (Fig. 1A) [71, 94].
One class of sperm might have intrinsic physiological
differences in viability, capacitation, or the dynamics of
the acrosome reaction [75, 95].

2. Sperm of one sex might be more capable of effecting
fertilization once the egg has been reached, depending
on factors such as the condition of the female reproduc-
tive tract and the penetrability of the zona pellucida,
which likely vary according to the time of ovulation
relative to time of insemination. Depending on the mat-
urational state at the time of fertilization, the oocyte
might preferentially bind X- or Y-bearing sperm (Fig.
1B) [96].

3. Differences in the rate of development or in the sensi-
tivity to conditions of XX versus XY embryos within
the female reproductive tract cause a selective loss of
embryos of one sex prior to placentation (Fig. 1, C and
D). Such selection might be favored by particular nutri-
tional components or developmental asynchrony be-
tween the embryos and uterus. For example, faster
growth of embryos of one sex in a litter-bearing species,
where the space available limits the number of fetuses
that survive, could provide a competitive advantage to
that gender.

4. Selective fetal resorption/abortion is the final possible
means of skewing offspring sex ratio. It would appear
to provide a relatively costly means for adapting sex
ratio to maternal and environmental selective pressures
and was not found to be the cause of sex-ratio skewing
in the recent studies of Jimenez et al. in mice [78]. Nev-
ertheless, as a result of fetal resorption following im-
plantation, the Norway rat produces litters biased toward
females if mating occurs at first postpartum estrus fol-
lowing removal of the first litter [97]. Induced uterine
crowding also leads to a female bias in these rat litters.
In each case, the bias arose from absorption of male
fetuses after they had implanted but within the first half
of pregnancy. Examination of implantation sites in sub-
ordinate female hamsters reveals a preferential fetal loss
of male pups between Days 5 and 10 of pregnancy [65].
Analysis of preterm mortality records from the Medical
Birth Registry in Norway revealed that human male em-
bryos appear to be more sensitive to uterine stress and
thus likely to be aborted than females [98].
In some species of birds, changes in sex ratio have been

observed relative to abundance of food [99–101]. Because
the female is the heterogametic sex in birds, preovulatory
gamete selection must provide the means whereby avian
sex bias within the resulting clutch is adjusted [101].

Sexual Dimorphism in Development
of Preimplantation Embryos

Male and female preimplantational embryos differ in
their mRNA expression patterns. For instance, some genes
located on the X chromosome are expressed more robustly
in bovine and human female versus male embryos [102–
105]. Several autosomal genes expressed in trophoblast,
such as IFN-% [106] and hCG [107], and a variety of im-
printed genes [108–110] are also not expressed or methyl-
ated identically across the sexes.
The most frequently reported manner in which early

male and female embryos differ is in their rates of cleavage
in the first few days after fertilization. Embryos produced

in vitro in a number of species seem to fall into fast-cleav-
ing and slow-cleaving groups, which are predominantly
male and female, respectively. This phenomenon has been
observed for bovine [111–115], murine [116], and ovine
embryos [117, 118]. Male in vivo-produced porcine em-
bryos, both prior to and subsequent to blastocyst hatching,
have also been reported to be larger and to have more cells
than female embryos [119, 120]. That male embryos de-
velop faster is by no means universally accepted, however,
as some studies have reported no differences in human
[121], bovine [122], and cultured mouse embryos in the
time to reach the blastocyst stage [122 and unpublished
work from this laboratory on bovine and mouse]. Similarly,
male and female porcine embryos have been reported to
grow at similar rates in vivo [123, 124]. Nonetheless, male
bovine blastocysts have significantly more cells than fe-
males immediately posthatching [125].
There could be several explanations for these contrasting

observations. One is species and breed/strain differences.
Another is that the culture conditions employed for the in
vitro studies influenced the results. For example, the pres-
ence of glucose in the medium may preferentially favor
either the growth or the development of male over female
bovine embryos [106, 126–128]. A third explanation may
relate to the manner in which growth rates are measured.
In many cases, the end-point employed for in vitro studies
has been the time taken to reach a readily observable stage
in development, most usually the formation of the blasto-
cyst. By such a standard, all embryos could have equivalent
growth rates during the early cleavage stages, but the fe-
male embryos might be less capable than male embryos in
making a particular developmental transition, e.g., to form
a blastocoel or to advance from early to late blastocyst (see
Fig. 1D). Thus, a failure to develop or to grow at the same
rate as the other sex is probably due to inadequacies of the
culture medium or to other environmental stresses. There
are several studies indicating that IVP male bovine embryos
predominate among blastocysts and that this skew in sex
ratios becomes more exaggerated at the expanded and
hatched stages [129–132]. Meanwhile, embryos arrested in
development prior to the blastocyst stages have been shown
to be predominantly female [128, 133, 134]. Our laboratory
has shown that the block to female bovine embryo devel-
opment in a glucose-containing medium occurs at about the
time the blastocoel cavity begins to form [106]. Moreover,
the data show no differences in growth rate between male
and female embryos up to Day 6 of development and that
the females that advance to expanded blastocyst do so at
the same rate as the male embryos. The cohort of females
that fail to advance to expanded blastocyst appear to be less
tolerant of the high glucose concentrations in the medium
than the successful females. In mouse embryos, a high con-
centration of glucose (5.56 mM) in the media does not det-
rimentally effect female or male embryonic development
(unpublished observations), which is consistent with the
finding that glucose does not always inhibit preimplanta-
tional murine embryo development [135].

Implications of Sex-Ratio Skewing to Agricultural
and Human Medicine

If there is a difference in the relative numbers of male
and female IVP embryos at the blastocyst stage, a skew
toward males born after embryo transfer might be antici-
pated unless, of course, female blastocysts have some ad-
vantage over males posttransfer. A preponderance of bull
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calves has been noted in at least one such study with cattle
[136]. Usually, however, transfer of embryos in cattle is
carried out with a mixture of compact morulae and early,
rather than expanded, blastocysts. Under such a regimen, it
is unlikely that a marked difference in sex ratios would be
noted.
Importantly, many successful human IVF programs now

utilize blastocyst-stage embryos because it ensures that the
embryos are developmentally competent through the cleav-
age stages. In earlier days, IVF embryos were cultured only
through the very early cleavage stages before they were
transferred [137]. While such early studies showed no skew
in the sex ratio [e.g., 138], several recent reports show a
distinct male bias after selection of the most advanced em-
bryos for transfer [139–141]. In other words, inadvertent
sex selection may be occurring in human IVF programs.
These data suggest that, in the human as well as in the
bovine, male embryos make the transition to blastocysts
better than females. It also seems possible that, if embryos
are selected at the expanded-to-hatched blastocyst stage in
either species, the bias toward males will be exaggerated.
Maternal skewing of offspring sex ratio might have im-

portant agricultural implications. Offspring of one gender
may be preferred over the other. For instance, females are
preferred in the dairy industry, whereas males are favored
in the beef industry. Altering the diet content prior to breed-
ing might provide a means of manipulating the sex ratio,
e.g., a lower plane of nutrition might result in more female
offspring.
In summary, sex-ratio skewing occurs in some mam-

malian species under both field and laboratory conditions,
and these alterations might be adaptive, particularly to the
mother who bears most of the lifetime burden of caring for
the young. The underlying mechanisms are likely to be
complex and are still not well understood. However, by
combining field and laboratory results, reasonable inferenc-
es may be drawn. Our studies in the mouse indicate that
maternal diet, possibly its caloric content, can play a direc-
tive role in skewing offspring sex ratio. As Sheldon and
West [29] discuss, past studies testing the sex-allocation
theory of Trivers and Willard [12] in various animal pop-
ulation have employed the nebulous term maternal condi-
tion. Maternal condition in wild populations has been as-
sessed either by the animal’s dominance behavior or has
been based on morphological/physiological characteristics.
A unifying definition of maternal condition needs to be
established before proper inferences can be drawn across
populations and among various species. Importantly, the
diet of the mother, both before and after conception, needs
to be considered as causative factors in skewing offspring
sex ratio in animals.
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