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Abstract

Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal
and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increas-
ing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation.
Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (meta-
bolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on
species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach
to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns
occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were
exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal
limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for
metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more
variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to
extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk
from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade-off between acute
and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus
represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high
metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to
increasing temperature helps providing more accurate predictions on species vulnerability to warming.
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Introduction

Changes in latitudinal, altitudinal and bathymetric dis-
tribution caused by global warming have been increas-
ingly documented across terrestrial and aquatic taxa
(e.g., Southward et al., 1995; Menendez & Gutierrez,
1996; Parmesan & Yohe, 2003; Root et al., 2003; Perry
et al., 2005). In general, understanding the mechanistic
basis of sublethal and lethal thermal tolerance (e.g.,
P€ortner, 2001; Helmuth et al., 2005) allows the predic-
tion of species responses under future warming scenar-
ios, and scaling up predictions to assemblages and
ecosystems (Bernardo et al., 2007; Somero, 2010, 2011).

To date, however, most studies investigating the causal
mechanisms underpinning species vulnerability to
warming have focused on physiological traits in isola-
tion (e.g., Stillman & Somero, 2000; P€ortner & Knust,
2007; Calosi et al., 2008; Bartolini et al., 2013).
The frequency and intensity of extreme acute thermal

events are predicted to increase with the global change
(IPCC et al., 2012). Species short-term resilience to these
acute thermal events will depend on their upper ther-
mal limits, as well as on their ability to adjust these lim-
its, when exposed to higher temperatures, through
phenotypic plasticity (e.g., acclimatization). Indeed,
phenotypic plasticity may allow organisms to express
broader thermal tolerance windows (Ghalambor et al.,
2007; Charmantier et al., 2008; Bozinovic et al., 2011). In
the longer term, plasticity may define species scope for
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resilience to change via phenotypic buffering (Wadd-
ington, 1942; Bradshaw, 1965), and, in part, species
scope for adaptation via genetic assimilation (Pigliucci
et al., 2006). Conventionally, plasticity of thermal limits
has been studied by characterizing the magnitude of
Reaction Norms (Schlichting & Pigliucci, 1998 and ref.
therein). However, no comparative study has, so far,
focused on both the magnitude and shape of plasticity
(sensu Schlichting & Pigliucci, 1998; Pigliucci, 2001; c.f.
Murren et al., 2014).
While tolerance to heat is generally conserved across

lineages (Ara"ujo et al., 2013), some species appear to
have evolved extreme upper thermal limits at the
expense of plasticity of these limits, reflecting an evo-
lutionary trade-off between these traits (Stillman, 2002,
2003; see also Angilletta et al., 2003). The most heat-
tolerant taxa may, therefore, be at greater risk from
warming (Stillman, 2003; Deutsch et al., 2008; Tewks-
bury et al., 2008; see also Ara"ujo et al., 2013; Overgaard
et al., 2014; Peck et al., 2014), not only because they
possess reduced safety margins (sensu Stillman, 2002;
Deutsch et al., 2008; see also Ara"ujo et al., 2013; Diede-
rich & Pechenik, 2013; Overgaard et al., 2014), but also
because their scope for plasticity is more limited (Still-
man, 2003; c.f. Calosi et al., 2008; Bozinovic et al.,
2011).
While upper thermal limits define species ability to

persist under extreme acute thermal events, physiologi-
cal performances (sensu Bozinovic et al., 2011), such as
metabolic rates, mediate species resilience to chronic
exposure to warming. Metabolic rate is suggested to
reflect the energetic cost of adaptation to a particular
thermal environment (Clarke, 2004; Clarke & Fraser,
2004; see also Watson et al., 2013), rather than a purely
mechanistic response to temperature. In this sense, tem-
perature imposes a high selective pressure on maxi-
mum physiological performances: i.e., the evolution of
high metabolic rates may allow organisms to exploit a
broader range of environmental temperatures, but also
implies higher maintenance costs. As a consequence,
species living in different thermal habitats may have
evolved different levels of metabolic control, suggesting
different levels of vulnerability to warming (Sokolova
& P€ortner, 2003; Morley et al., 2009; Dillon et al., 2010;
Rastrick & Whiteley, 2011; Watson et al., 2013). Again,
while most studies to date have investigated physiolog-
ical traits in isolation (e.g., Compton et al., 2007; Calosi
et al., 2010; Rastrick & Whiteley, 2011), a more holistic
approach integrating the investigation of multiple
physiological traits (thermal limits and metabolic rate),
and their plasticity (magnitude and shape) (Bozinovic
et al., 2011; Murren et al., 2014) needs to be developed
to more accurately elucidate species vulnerability to
global warming.

Here we integrate the investigation of metabolic per-
formance, thermal tolerance, and their plasticity to pro-
vide more accurate and balanced predictions on
relative species vulnerability to both chronic and acute
effects of warming. To provide an empirical test for this
new paradigm, we applied our integrative, synthetic
approach to an assemblage of six caridean prawns
occurring in the same geographic, hence macroclimatic,
region, but living in different thermal habitats. Three
species inhabit broader/more variable thermal environ-
ments (including the invasive species Palaemon macro-
dactylus), and three species live in narrower/more
stable thermal conditions. On the basis of the current
literature (e.g., Stillman, 2002, 2003 Deutsch et al., 2008;
Dillon et al., 2010; see also Folguera et al., 2009; Bozi-
novic et al., 2013; Peck et al., 2014; Rezende et al., 2014),
we hypothesize that, compared to species occupying
narrower/more stable thermal niches, species inhabit-
ing broader/more variable thermal environments pos-
sess: (i) higher upper thermal limits, (ii) lower plasticity
of these limits, (iii) higher metabolic rates, (iv) higher
metabolic plasticity, and (v) higher metabolic costs at
higher temperatures. As a consequence, species living
in broader/more variable thermal environments may
be less vulnerable to extreme acute thermal events, but
at greater risk from chronic exposure to warming (Still-
man, 2002, 2003; Deutsch et al., 2008; Tewksbury et al.,
2008; see also Folguera et al., 2009; Overgaard et al.,
2014), according to the idea that evolutionary trade-offs
may exist between these two forms of heat tolerance
(Rezende et al., 2014).
Caridean prawns are both ecologically and economi-

cally important. They represent a large fraction of bio-
mass of coastal shallow water assemblages of
invertebrates (e.g., Bechmann et al., 2011), and exert a
great ecological impact upon benthic trophic webs as
either carnivores or detritivores (Pihl & Rosenberg,
1984; Henderson, 1987; Oh et al., 2001). Also, some spe-
cies are targets of commercial and artisanal fisheries
(e.g., Crangon crangon, Attrill & Thomas, 1996; Hender-
son et al., 2006).

Materials and methods

Specimen description, collection, incubation, and
maintenance

We investigated six caridean shallow water prawn species:

Palaemon elegans (Rathke 1837), Palaemon macrodactylus (Rath-
bun 1902), Palaemon serratus (Pennant 1777) and Palaemonetes
varians (Leach 1814) (Palaemonidae), Crangon crangon (Linna-

eus 1758) (Crangonidae), and Pandalus montagui (Leach 1814)
(Pandalidae). These species all occur in the same geographic,
hence macroclimatic, region, but live in different thermal
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habitats. Palaemon elegans and P. varians occupy broader/more

variable thermal niches, inhabiting intertidal rock pools and
salt marshes respectively. Palaemon serratus, C. crangon and P.
montagui occupy narrower/more stable thermal niches, living

in subtidal habitats. The invasive species P. macrodactylus also
lives in subtidal habitats, but withstands a broader range of
thermal conditions, which possibly explains its recent geo-

graphical expansion (Spivak et al., 2006; Lavesque et al., 2010;
Soors et al., 2010).

Adult individuals of each species were collected at four
locations along the English Channel on the South coast of Eng-

land (for specific details see Table S1). After collection, indi-
viduals were transported to the laboratory in plastic
containers with water from the collection site within 24–48 h.

The water was continuously aerated, and the temperature was
measured approx. every 30 min (max. fluctuations ~ 0.5 °C).

Once in the laboratory specimens were transferred to tanks

(approx. 4.6 l, max. 10 ind. per tank) supplied with fully aer-
ated sea water (salinity 33), and kept at their collection tem-
perature for 24 h to adjust to laboratory conditions.
Subsequently, individuals were haphazardly divided into four

equal-size groups: 20 for P. elegans, seven for P. macrodactylus,
eight for P. serratus, 25 for P. varians, 28 for C. crangon, and
eight for P. montagui. Each group was exposed to one of four

incubation temperatures (10, 15, 20 and 25 °C) for 7 days. This
exposure period is considered to be sufficiently long to accli-
mate temperate species at 15–20 °C, but short enough to pre-

vent the onset of longer-term negative effects due to too much
time spent in the laboratory (e.g., Terblanche et al., 2006;
Calosi et al., 2008, 2010). Incubation temperatures were selected
within the temperature range experienced by the species across

their geographical ranges, as well as potential future warming
scenarios (IPCC, 2014). Specimens were incubated stepwise in
constant-temperature (CT) rooms (12 : 12 h L/D regime), start-

ing from their collection temperature. At each step aquaria
were ramped to the next temperature level, and kept at these
conditions for 24 h before being further ramped to the next

level, with temperature increasing/decreasing with a rate of
approx. 0.015 ! 0.005 °C min"1 (mean ! SD). Once they had
reached the desired incubation temperature, aquaria were kept
at these conditions for 1 week, with a maximum water temper-

ature fluctuation of approx. 0.6 °C.
Over the exposure period, specimens were fed daily ad libi-

tum with marine flakes (New Era Aquaculture Ltd, Thorne,

UK). Water changes were performed every 2 days to prevent
excreta accumulation, and undesired fermentation and
decomposition of leftover food. Once the exposure period was

completed, metabolic rate and upper thermal limits were
determined for each individual.

Determination of metabolic rate

Oxygen consumption rate (ṀO2) under resting conditions was
used as a proxy for Standard Metabolic Rate (SMR), as in Spic-
er & Eriksson (2003) and Small et al. (2010). ṀO2 was mea-

sured in glass closed cell experimental chambers. Each
chamber was supplied with fully aerated sea water at the
selected incubation temperature and sealed underwater to

prevent air bubbles trapping in the chamber. Furthermore,

each chamber was equipped with a magnetic flea, which was
shielded on the bottom by a perforated Petri dish, and placed
over a multi-channel magnetic stirrer (MS-53M, Jeio Tech,

Chalgrove, UK) to ensure moderate and continuous water
mixing, preventing the formation of a hypoxic layer around
the prawn. Also, to provide a substrate to reduce prawn activ-

ity levels, each chamber was supplied with one or two mar-
bles (42 mm 9 42 mm 9 16 mm), depending on specimen
dimensions, resulting in a volume of water of either 190.3 or
218.4 ml. Additionally, to monitor prawn behaviour in the

chambers, subsamples of six ind. for each species at each incu-
bation temperature were filmed with cameras. All the speci-
mens were quiescent during the experimental trials, and no

major changes in behaviour were observed at elevated incuba-
tion temperatures (data are not presented here); ṀO2 could,
therefore, be effectively used as proxy for SMR. Each prawn

was introduced into an experimental chamber and allowed to
recover from handling and to settle into experimental condi-
tions for 30 min (Small et al., 2010; Magozzi and Calosi pers.
obs.). The chambers were then closed and maintained sealed

for experimental trials of 1.5–2 h. Preliminary tests defined
this period to be sufficiently long to undertake ṀO2 measure-
ments, while preventing prawn exposure to hypoxic condi-

tions: i.e., oxygen saturation was never allowed to fall under
70% (Vandonk & Dewilde, 1981; Small et al., 2010; Oliphant
et al., 2011), with oxygen concentration remaining always

>190 lmol O2 l"1. To avoid sharp thermal variations, respira-
tion chambers were kept in CT rooms inside temperature-con-
trolled open water baths at the selected incubation
temperature during the experimental trial. Oxygen concentra-

tion was measured both immediately before closing the cham-
ber and immediately after reopening it at the end of the
experimental trial by using an O2 electrode (1302, Strathkelvin

Instruments, Glasgow, Scotland) connected to a calibrated
oxygen meter (929, Strathkelvin Instruments), and expressed
as nmol O2 g wet weight"1 min"1 STP. Before the experiments

started, calibration was carried out at each incubation temper-
ature by using 0 and 100% O2 saturation as calibration points.

After ṀO2 measurements were completed, wet weight (g)
and body volume (mL) of each prawn were measured and

then used for correction of the ṀO2 values. Weight was deter-
mined by using an electronic high precision scale (PF-203,
Fischer Scientific UK Ltd, Loughborough, UK), and specimen

volume was determined by immersing each prawn in a Pyrex
graduated cylinder (100 ml, accuracy 1 ml, Fischer Scientific
UK Ltd) supplied with sea water, and measuring the water

displaced by the introduction of the prawn. All individuals
were returned to their aquaria, at their incubation tempera-
ture, each inside a numbered perforated screw top transparent
container (either 82.0 or 149.0 ml, depending on specimen

dimensions), and left to recover for 24 h before upper thermal
limits were determined.

Determination of upper thermal limits

To measure Upper Thermal Limits (UTL) a number of obser-
vable responses were identified during preliminary tests and
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used as end-points, as in Calosi et al. (2008) and Massamba-

N’siala et al. (2012). A temporal sequence of responses to
increasing temperature was identified as follows: (1) Mouth
Gaping (MG) (wide and continuous opening of the mouth

parts); (ii) Tail Flipping (TF) (fast upside down flip of the tail
bringing abdomen and cephalothorax towards one another)
(Arnott et al., 1998); (iii) Loss of Orientation (LO) (inability of a

prawn to right itself after having turned onto a side or its dor-
sal surface) (Brattstrom, 1968; Hopkin et al., 2006; Oliphant
et al., 2011); (iv) Onset of Spasms (OS) (first uncontrolled, con-
vulsive and spasmodic movements) (Zweifel, 1957; Luttersch-

midt & Hutchison, 1997; Hopkin et al., 2006); (v) Death (D) or
total paralysis (prawn laying on the bottom of the experimen-
tal well for more than 15 s with no movement/pleopod beat-

ing).
However, not all individuals showed this complete

sequence of end-points: 94.5, 90.7, and 100% of the experi-

mental prawns showed LO, OS and D respectively, while
only 79.3 and 64.8% of them showed MG and TF. Also, com-
pared to MG and TF, LO, OS and D showed lower variance.
Therefore, only LO, OS and D were assumed to represent

temperature-induced mechanisms underpinning the failure
of fundamental physiological functions (Lutterschmidt &
Hutchison, 1997). However, to avoid redundant utilization of

these end-points, correlation analyses among them were per-
formed to include only functionally independent traits. As
there were significant positive relationships between LO and

OS, OS and D, and LO and D (minimum r263 = 0.840,
P < 0.0001), here we mainly focused on OS, which more clo-
sely fulfils the original definition of critical thermal maxi-
mum (CTmax): ‘the thermal point at which locomotory

activity becomes disorganized and the animal loses its ability
to escape from conditions that will promptly lead to its
death’ (Cowles & Bogert, 1944; see also Lutterschmidt &

Hutchison, 1997).
Experiments to determine UTL were started at the tempera-

ture at which individuals of a given group had been incubated

during the exposure period, and carried out by employing a
ramping program, with temperature increasing at a rate of
0.75 °C min"1 (realised + 0.668 ! 0.016 °C min"1; mean
! SE) (Lutterschmidt & Hutchison, 1997; Rezende et al., 2011;
c.f. Overgaard et al., 2012) performed with a computer-con-
trolled water bath (R5, Grant Instruments Cambridge Ltd,
Shepreth, UK). Each prawn was removed from its individual

aquarium using a small net and rapidly, but carefully, intro-
duced into one well (diam. 51 mm, depth 65 mm) of a generic
six-well plate, whose bottom surface was painted white with

Tipp-Ex! to allow an easier and more accurate visualization
of the end-points. A maximum of five individuals were tested
at any time and, to avoid observer biases (Terblanche et al.,
2007), measurements were all undertaken by one single obser-

ver (S.M.). To avoid prawn escaping, wells were covered with
a lid between additions of individuals; once the experiment
started, the lid was removed to allow full aeration. The actual

temperature was measured every 60 s with a digital thermom-
eter (HH802U, Omega! Engineering Inc., Stamford, USA)
placed in an empty well adjacent to the prawn wells to avoid

disturbance.

Definition and calculation of plasticity

Here plasticity is intended as the ability of specimens to adjust
their metabolic performance (measured as ṀO2) and thermal
tolerance (measured as UTL) following incubation to increas-
ing temperature. Plasticity was determined according to the

concept of Reaction Norms (Schlichting & Pigliucci, 1998 and
ref. therein; Pigliucci, 2001) (Figure S1), as well as Q10 for
metabolism. To determine both the magnitude and shape of

the plastic response (sensu Pigliucci, 2001; Murren et al., 2014),
plasticity was calculated both within the whole temperature
range examined (Ptot) and within smaller temperature inter-

vals (10–15, 15–20 and 20–25 °C – P10–15, P15–20, P20–25, respec-
tively) (Figure S1). Ptot was calculated as the difference
between mean values of either ṀO2 or UTL measured at the
two extreme temperature treatments (10–25 °C – P10–25). To

include P. montagui in the computation, Ptot was also calcu-
lated between 10 and 20 °C (P10–20), as this species had no rep-
licates at 25 °C due to 100% mortality at this temperature

(Table S1; see also Results). P10–15, P15–20 and P20–25 were calcu-
lated as the difference between mean ṀO2 and mean UTL
measured at two consecutive temperature treatments. This

complementary calculation allowed not only the quantification
of the magnitude of plasticity within smaller temperature
intervals, but also the description of the shape of Standard
Metabolic Rate–Temperature (SMR – T) and Upper Thermal

Limits–Temperature (UTL – T) Reaction Norms, providing a
more comprehensive understanding of plastic responses and
highlighting between-species differences (Schlichting & Pig-

liucci, 1998; Pigliucci, 2001; Murren et al., 2014). In addition,
we calculated the temperature coefficient for the change in
ṀO2 with temperature (Q10) both within the whole tempera-

ture range (considering as extreme temperatures 10 and either
20 or 25 °C) and within smaller temperature intervals. While
the calculation of Q10 values enables the distinction between
acclimation-induced changes in metabolism and just an

expected physiological response to temperature, it does not
allow an appropriate interpretation of the increase in energy
expenditure associated with metabolic plastic responses to

increasing temperature. Because we wish to consider the ener-
getic implications of the metabolic plastic response, as well as
to compare metabolic plasticity with that of thermal limits,

here we mainly focus on Reaction Norms.

Characterization of phylogenetic relationships among
species

Sequences were obtained from GenBank (http://www.ncbi.

nlm.nih.gov/) (see Table S2 for accession numbers). The pool
shrimp Procaris ascensionis (Chace & Manning 1972) and the
banded cleaner shrimp Stenopus hispidus (Olivier 1811) were

used as outgroups. Concatenated sequences were aligned
using the ClustalW (Thompson et al., 1994) algorithm within
MEGA 5.05 (Tamura et al., 2011). The partition homogeneity
test, otherwise known as the incongruence length difference

test (Farris et al., 1994) was carried out in PAUP* 4.b.10 (Swof-
ford, 2002) to assess if the data were significantly incongruent.
The test was implemented using maximum parsimony
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heuristic searches (100 replicates). All other settings were left

at their default values. The results of this test showed no sig-
nificant incongruence between genes (P = 0.96). Phylogenetic
reconstruction was carried out using maximum likelihood

(ML) as implemented in MEGA with all settings left as their
default options. Support was measured with 1000 bootstrap
replicates. Only clades with significant support values

(defined here as ≥ 60 bootstrap) are shown.
Our analysis highlights that, among palaemonid species,

P. elegans and P. serratus are the most phylogenetically closely
related (Figure S2), with P. varians being more closely related

to these two species than P. macrodactylus. Crangon crangon
and P. montagui are more closely related to each other than to
palaemonid species, although the reliability of their relation-

ship is relatively low. In general, it appears that ecological
competence (here defined as type of thermal habitat) is not
phylogenetically confounded.

Statistical analyses

The effects of species, incubation temperature, and their inter-

action on ṀO2 and UTL were analysed by using a two-way
ANCOVA test with ‘Tank’ as a random factor nested within ‘Spe-
cies’ 9 ‘Temperature’, and ‘Wet weight’ as a covariate. Pair-
wise comparisons were based on model-estimated marginal

means with Least Significant Difference test correction
(a = 0.05). Data for ṀO2 and UTL were non-normally distrib-
uted even following various transformations (minimum

K-S274 = 1.466, P = 0.027), and variances were not homoge-
neous (minimum F2,252 = 2.383, P = 0.001). However, as our
experimental design included 24 ‘Species’ by ‘Temperature’

combinations with a minimum of seven replicates per treat-
ment, the ANCOVA design was assumed to be tolerant from the
assumption of normality and heteroscedasticity (Sokal & Ro-
hlf, 1995; Underwood, 1997; see also Melatunan et al., 2011).
The term ‘Tank’ did not have a significant effect on ṀO2 and
UTL both among species and temperature treatments (maxi-
mum F2,177 = 2.869, P = 0.060), therefore it was removed from

further analyses.
In addition, a best-fit approach was used to select regression

models – considering linear, logarithmic, quadratic, cubic,

power and exponential methods – to best describe the rela-
tionships between ṀO2, UTL, and their plasticity. However,
when the difference in the regression coefficients (R2) was ≤ 1,
simpler relationships were favoured using a maximum parsi-

mony approach. All analyses were conducted using IBM SPSS

Statistics 19.

Results

Metabolic rate

Means ! SE for oxygen consumption rate (ṀO2) are
given in Fig. 1a and Table S3. The minimum mean ṀO2

was observed in P. serratus incubated at 10 °C
(46.1 ! 7.1 nmol O2 g wet weight"1 min"1), while the
maximum was observed in P. varians incubated at

25 °C (799.9 ! 56.7 nmol O2 g wet weight"1 min"1). In
general, greater ṀO2 was observed at higher incubation
temperatures in all species. Nevertheless, ṀO2 response
to increasing temperature was significantly different in
different species (Fig. 1a), as indicated by the presence
of a significant interaction between ‘Species’ and ‘Tem-
perature’ (F14,299 = 7.1, P < 0.0001) (Table 1). At the
lowest temperature tested (10 °C), P. serratus showed
significantly lower mean ṀO2 than all the other species,
while P. montagui exhibited significantly higher mean
ṀO2 (being comparable to P. elegans and P. varians).
Crangon crangon and P. macrodactylus showed interme-
diate mean ṀO2 between P. elegans, P. serratus and P.
varians, with P. macrodactylus being comparable to P. ele-
gans and P. varians (Fig. 1a). At the highest temperature
tested (25 °C), P. elegans and P. varians, followed by P.
macrodactylus, showed significantly higher mean ṀO2

than P. serratus and C. crangon. Since no individuals of
P. montagui survived exposure to 25 °C, the highest
temperature tested for this species was 20 °C. At this
temperature, P. montagui showed significantly higher
mean ṀO2 than the other subtidal species (C. crangon,
P. serratus and P. macrodactylus), being statistically com-
parable to P. elegans and P. varians (Fig. 1a). Wet weight
had a positive significant effect on ṀO2 (F1,299 = 166.3,
P < 0.0001) (Table 1).

Upper thermal limits

Means ! SE for Upper Thermal Limits (UTL), mea-
sured as Onset of Spasms (OS), are given in Fig. 1b and
Table S3. Means ! SE for UTL, measured as Loss of
Orientation (LO) and Death (D), are also given in Fig-
ure S3a, b and Table S3. The minimum mean UTL (for
all end-points) was observed in P. montagui incubated
at 10 °C (LO: 23.6 ! 0.2 °C; OS: 24.8 ! 0.3 °C; D:
27.1 ! 0.4 °C), while the maximum was observed in P.
macrodactylus incubated at 25 °C (LO: 35.7 ! 0.4 °C;
OS: 37.8 ! 0.5 °C; D: 39.9 ! 0.2 °C).
While in general higher UTL were observed at higher

incubation temperatures in all species, UTL response to
increasing temperature was significantly different in
different species (minimum F14,275 = 2.2, P = 0.010)
(Fig. 1b and Figure S3a, b) (Table 1). At 10 °C, P. macro-
dactylus, P. varians and C. crangon exhibited significantly
higher mean OS than P. elegans and P. serratus, which in
turn showed significantly higher mean OS than
P. montagui (Fig. 1b). Between-species differences iden-
tified for OS were maintained also for LO and D with
two exceptions: (i) P. elegans showed significantly
higher mean LO than P. serratus, being comparable to
P. macrodacylus and P. varians (Figure S3a); (ii) P. varians
showed significantly higher mean D not only than
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P. elegans but also than P. macrodactylus and C. crangon
(Figure S3b). At 25 °C, P. macrodactylus showed signifi-
cantly higher mean UTL (for all end-points) than all the
other species, followed by P. elegans, P. varians and
C. crangon, and finally by P. serratus (Fig. 1b and Figure
S3a, b). UTL in P. montagui could not be tested at 25 °C,
as no individuals survived exposure to this tempera-
ture. However, mean UTL in P. montagui incubated at
20 °C were significantly lower than mean UTL in all
the other species incubated at both 20 and 25 °C
(Fig. 1b and Figure S3a, b). Wet weight did not have a
significant effect on UTL (maximum F1,275 = 0.4,
P < 0.528 for LO), except on OS (F1,263 = 15.7,
P < 0.0001) (Table 1).

Plasticity of metabolic rate

Data for plasticity of oxygen consumption rate (DṀO2)
are given in Table S4. Within the whole temperature
range examined (10–25 °C), DṀO2 ranged from
125.3 nmol O2 g wet weight"1 min"1 in P. serratus to
719.8 nmol O2 g wet weight"1 min"1 in P. varians.
While ṀO2 increased exponentially with increasing
incubation temperature in all species (except in P. monta-
gui – quadratic) (minimum R2 = 0.672, F1,89 = 182.0,
P < 0.0001), there were between-species differences in
DṀO2, with P. elegans and P. varians, followed by P. mac-
rodactylus, showing higher DṀO2 than P. serratus and
C. crangon (Fig. 1c and Figure S4). While showing simi-
lar DṀO2 to P. serratus and C. crangon between 10 and
20 °C, P. macrodactylus exhibited higher DṀO2 between
20 and 25 °C, ranking after P. elegans and P. varians
(Table S4). Pandalus montaguiwas the only species show-
ing a quadratic increase in ṀO2 with increasing temper-
ature (R2 = 0.896, F2,17 = 73.5, P < 0.0001) (Fig. 1c and
Figure S4), possibly due to the lack of measurements at
25 °C. However, while between 10 and 15 °C this spe-
cies showed the lowest DṀO2, between 15 and 20 °C it
showed high DṀO2, ranking after P. varians (Table S4).
Finally, Q10 values are reported in Table 2.

Plasticity for upper thermal limits

Data for plasticity of Upper Thermal Limits (DUTL) are
given in Table S4. Between 10 and 25 °C, P. serratus, C.
crangon and P. varians showed the lowest DUTL mea-
sured as LO (3.4 °C), OS (2.7 °C) and D (1.2 °C) respec-
tively. By contrast, P. macrodactylus showed the highest
DUTL measured as LO and OS (6.0 and 5.9 °C), and P.
serratus exhibited the highest DUTL measured as D
(6.8 °C). Between 10 and 20 °C, P. montagui showed
lower DUTL than all the other species (except than P.
varians for OS and D, and C. crangon for D). Different
species increased their UTL with increasing tempera-
ture by following different patterns (Fig. 1d, Figure S3c
and Figure S5a, b, c), highlighting between-species dif-
ferences in DUTL. In more detail, UTL increased line-
arly in P. macrodactylus and P. varians (minimum
R2 = 0.079, F1,53 = 4.5, P = 0.038), logarithmically in P.
elegans (except for LO), P. serratus, and C. crangon (mini-
mum R2 = 0.410, F1,77 = 53.6, P < 0.0001), and quadrati-
cally in P. montagui (except for LO) (minimum
R2 = 0.814, F2,15 = 32.9, P < 0.0001) (Fig. 1d, Figure S3c
and Figure S5a, b, c). While UTL of P. elegans, P. serra-
tus, C. crangon and P. montagui showed an asymptotic
trend within the examined temperature range, those of
P. macrodactylus and P. varians did not. Nevertheless, P.
macrodactylus showed greater DUTL than P. varians, as
regression lines for LO, OS and D in this species had
greater slopes (Fig. 1d and Figure S3c).

Relationships between ṀO2, UTL, and their plasticity

Over the whole temperature range examined (10–
25 °C), a significant positive logarithmic relationship
between ṀO2 and UTL (for all end-points) was found
in all species (minimum R2 = 0.093, F1,53 = 5.4,
P = 0.023) (Fig. 2 and Figure S6a, b). Pandalus montagui
represented the only exception showing a marginally
significant positive logarithmic relationship between
DṀO2 and UTL measured as LO (R2 = 0.219,

Fig. 1 The effect of temperature on (a) mean oxygen consumption rate (ṀO2) (here used as a proxy for Standard Metabolic Rate, SMR),

(b) Upper Thermal Limits (UTL), measured as Onset of Spasms (OS), and (c, d) ṀO2 and UTL plasticity in the prawn species investi-

gated in this study: Palaemon elegans, Palaemon macrodactylus, Palaemon serratus, Palaemonetes varians, Crangon crangon and Pandalus

montagui. Histograms represent mean ! SE for (a) ṀO2 or (b) UTL after 7 day exposure to one of four incubation temperatures: 10 (yel-

low), 15 (light orange), 20 (dark orange) and 25 °C (red). Significantly different mean values (P < 0.05) at different incubation tempera-

tures for the same species are indicated by different letters placed above the histograms, while significantly different mean values

(P < 0.05) at the same incubation temperature among different species are indicated by different numbers placed inside the histograms.

Finally, overall significant differences in mean values (P < 0.05) among different species are indicated by different numbers preceded

by a star placed at the top of the graph above each species. Pairwise comparisons were conducted using the Estimated Marginal Means

test with Least Significant Difference test correction. Lines in (c, d) represent Standard Metabolic Rate–Temperature (SMR–T) and (d)

Upper Thermal Limits–Temperature Reaction Norms (UTL–T), respectively: i.e., the patterns through which species increased their

ṀO2 or UTL in response to increasing incubation temperature according to the best-fit regression model. Raw data, regression equation

and relevant statistics for ṀO2 and UTL are provided in Figures S4 and S5b respectively.

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12695

PHYSIOLOGICAL ABILITIES , PLASTICITY, WARMING 7



F1,13 = 3.7, P = 0.078), and no significant relationships
between DṀO2 and UTL measured as OS and D (maxi-
mum R2 = 0.211, F2,17 = 2.3, P = 0.133).
In addition, a significant negative relationship

between UTL and DUTL was found when UTL was
measured as D (Fig. 3), indicating that species showing
the highest UTL also showed the lowest DUTL. Particu-
larly, as UTL increased, DUTL decreased linearly
between 10 and 15 °C (R2 = 0.826, F1,3 = 19.0,
P = 0.012) (Fig. 3a), and quadratically between 15 and
20 °C and between 10 and 20 °C (minimum R2 = 0.966,
F2,3 = 42.1, P = 0.006) (Fig. 3b, d). No significant rela-

tionship between UTL and DUTL was found at 20–
25 °C, while a marginally significant negative linear
relationship was found at 10–25 °C (Fig. 3c). Palaemon
macrodactylus showed both high UTL and high DUTL
(Fig. 3). A significant logarithmic relationship between
ṀO2 and DṀO2 was also found, but only between 20
and 25 °C (R2 = 0.890, F1,3 = 24.3, P = 0.016), and,
therefore, it is not represented here.

Discussion

Here we demonstrate the importance of integrating
the investigation of multiple physiological traits (meta-
bolic rate and thermal limits), and their plasticity, to
provide more accurate and balanced predictions on
relative species vulnerability to global warming. Com-
pared to species occupying narrower/more stable
thermal niches, species inhabiting broader/more vari-
able thermal environments appear to be more tolerant
to extreme acute thermal events as a result of their
higher thermal limits. Nevertheless, these species may
be at greater risk from the negative effects of chronic
exposure to warming due to the greater metabolic
costs they incur (Deutsch et al., 2008; Tewksbury et al.,
2008; Dillon et al., 2010). As a consequence, our results
support the idea that evolutionary trade-offs may exist
between acute and chronic heat tolerance (Rezende
et al., 2014). However, the invasive species P. macro-
dactylus represents an exception to this general pattern,
showing elevated thermal limits and plasticity of these
limits, as well as a high metabolic control. This combi-
nation of traits possibly explains the recent geographi-
cal expansion of this species (Bates et al., 2013), and
may make it particularly resilient to future warming
scenarios (IPCC, 2014). Our findings and their likely
ecological implications are discussed below, and the
importance of integrating multiple physiological

Table 1 Results for two-way ANCOVAs testing the effect of

‘Species’, ‘Temperature’, and their interaction on the oxygen
consumption rate (ṀO2) and Upper Thermal Limits (UTL),
measured as Loss of Orientation (LO), Onset of Spasms (OS)

and Death (D), for the prawn species investigated in this study
after 7 day exposure to one of four incubation temperatures
(10, 15, 20 and 25 °C) using ‘Wet weight’ as a covariate.

Degrees of freedom (df), mean of square (MS), F-ratio (F) and
probability level (p) are reported

Trait Source df MS F P

MO2 Species 5 33296.8 32.1 <0.0001
Temperature 3 301692.2 290.7 <0.0001
Interaction 14 7393.7 7.1 <0.0001
Wet weight (cov) 1 172579.9 166.3 <0.0001

LO Species 5 137.9 93.6 <0.0001
Temperature 3 161.0 109.3 <0.0001
Interaction 14 3.2 2.2 0.010

OS Species 5 101.9 85.2 <0.0001
Temperature 3 156.6 131.1 <0.0001
Interaction 14 5.4 4.5 <0.0001
Wet weight (cov) 1 18.8 15.7 <0.0001

D Species 5 139.1 269.2 <0.0001
Temperature 3 185.8 359.4 <0.0001
Interaction 14 12.1 23.4 <0.0001

Table 2 Temperature sensitivity of ṀO2, expressed as the temperature coefficient for the change in ṀO2 with temperature (Q10),
in the prawn species investigated in this study. The temperature ranges used for the determination of Q10 are

10–20 and 10–25 °C. Mean Q10 for species living in broader/more variable thermal habitats and for species occupying narrower/
more stable thermal niches are also reported. Types of habitat are indicated by letters placed next to species names: B stands for
broader/more stable thermal environments, while N indicates species characterised by narrower/more stable thermal niches

Species
Q10

(10–20 °C)
Q10

(10–25 °C)
Mean Q10

(10–20 °C)
Mean Q10

(10–25 °C)

Palaemon elegans (B) 3.52 3.91 3.78 3.78
Palaemon macrodactylus (B) 2.41 2.79

Palaemonetes varians (B) 5.42 4.64

Palaemon serratus (N) 3.20 2.40 2.67 2.56
Crangon crangon (N) 2.80 2.72
Pandalus montagui (N) 2.01 nr*

*nr = not recorded.
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metrics to provide more accurate predictions on spe-
cies and assemblage vulnerability to acute and chronic
effects of global warming is highlighted.

Metabolic performance

As already demonstrated for caridean prawns (e.g.,
Vandonk & Dewilde, 1981; Dalla Via, 1985; Salvato
et al., 2001; Oliphant et al., 2011), exponential Standard
Metabolic Rate–Temperature (SMR–T) Reaction Norms
are observed in all the species examined (except in
P. montagui – quadratic). Indeed, metabolic rate
increases exponentially with temperature due to
increased kinetic energy of biochemical reactions (Gillo-
oly et al., 2001). However, between-species differences
in metabolic response are also observed, possibly due
to differences in mitochondrial density and aerobic
capacity (e.g., P€ortner, 2001; see also Morley et al., 2009)
emerging from the adaptation to different thermal
habitats (Clarke, 2004; Clarke & Fraser, 2004; see also
Watson et al., 2013).

Overall, species inhabiting broader/more variable
thermal environments (particularly P. elegans and
P. varians, but also, to an extent, P. macrodactylus) exhi-
bit steeper SMR–T Reaction Norms than those occupy-
ing narrower/more stable thermal conditions (P.
serratus, C. crangon and P. montagui). On average, these
species also show higher mean Q10 values (3.78 both
between 10 and 20 °C, and between 10 and 25 °C) rela-
tive to subtidal species (2.67 and 2.56 between 10 and
20 °C, and between 10 and 25 °C respectively) (see
Table 2). In the assemblage investigated, the evolution
of species metabolic response seems, therefore, to have
been driven by species evolutionary ecology (e.g., type
of thermal habitat), rather than by their phylogenetic
history. If such response had been driven by species
phylogeny, in fact, the response of P. serratus would
have resembled more closely that of other palaemonid
species, rather than that of C. crangon and P. montagui
(see Figure S1).
While high metabolic plasticity may allow the main-

tenance of aerobic scope during fast and frequent
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Fig. 2 The relationship between ṀO2 and UTL, measured as OS, for the prawn species investigated in this study. Circles represent

individual prawn ṀO2 and UTL measured after 7 day exposure to one of four incubation temperatures: 10 (yellow), 15 (light orange),

20 (dark orange) and 25 °C (red). Full lines represent the best-fit significant regression models, respectively; regression equation and

relevant statistics are as follows: P. elegans: y = 2.082ln(x) + 21.708, R2 = 0.609, F1,61 = 94.9, P < 0.0001; P. macrodactylus: y = 3.290ln

(x) + 18.692, R2 = 0.887, F1,21 = 165.2, P < 0.0001; P. serratus: y = 3.071ln(x) + 17.766, R2 = 0.599, F1,23 = 34.3, P < 0.0001; P. varians:

y = 1.60ln(x) + 27.491, R2 = 0.656, F1,53 = 101.3, P < 0.0001; C. crangon: y = 1.460ln(x) + 26.957, R2 = 0.244, F1,77 = 24.9, P < 0.0001;

P. montagui: P > 0.05.
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temperature fluctuations (Via et al., 1995; Bozinovic
et al., 2011), it also implies high energetic costs (Hulbert
& Else, 2000; Rastrick & Whiteley, 2011; see also Watson
et al., 2013). Based on Q10 results (Table 2), species liv-
ing in broader/more variable environments (particu-
larly P. elegans and P. varians) seem to better
compensate for temperature increases by increasing
their metabolism to a greater extent, compared to spe-
cies living in narrower/more stable thermal conditions.
However, when evaluating SMR–T Reaction Norms,
P. elegans and P. varians do show higher metabolic plas-
ticity, but also incur considerably higher energetic
costs. In general, species living in broader/more vari-
able thermal habitats may be at great risk from the neg-
ative effects of chronic exposure to warming due to the
higher metabolic costs they incur, compared to species
inhabiting narrower/more stable thermal environ-
ments.
Based on SMR–T Reaction Norms, the invasive spe-

cies P. macrodactylus maintains relatively low metabolic
rates, and associated energetic costs between 10 and
20 °C, but expresses remarkably high metabolic plastic-
ity between 20 and 25 °C. Between 10 and 25 °C, this
species also shows a lower mean Q10 than P. elegans
and P. varians (Table 2), but a higher Q10 in comparison
to the other subtidal species (C. crangon and P. serratus)
(Table 2). Palaemon macrodactylus seems, therefore, to

have evolved a remarkably high metabolic control,
which possibly explains its recent geographical expan-
sion (Bates et al., 2013), and may make it especially
resilient to future warming scenarios. By contrast, com-
pared to the other subtidal species, P. montagui exhibits
higher metabolic rates, showing reduced metabolic
plasticity at low temperatures (10–15 °C) and elevated
metabolic plasticity at relatively high temperatures (15–
20 °C). This, together with the fact that P. montagui
exhibits the lowest mean Q10 between 10 and 20 °C,
suggests that this species may not be able to beneficially
adjust its metabolic performance to temperatures
within the tested range (10 – 20 °C), therefore being
especially vulnerable to global warming.

Upper thermal limits

As already demonstrated for other crustaceans (e.g.,
Bradley, 1978; Layne et al., 1985; Lagerspetz & Bowler,
1993; Cuculescu et al., 1998; Stillman, 2003; Hopkin
et al., 2006), Upper Thermal Limits (UTL) increase with
increasing temperature in all the species investigated.
Nevertheless, between-species differences in UTL
response to increasing temperature are also observed
(e.g., Stillman, 2003; Hopkin et al., 2006; Faulkner et al.,
2014; see also Ara"ujo et al., 2013). In addition, UTL
are significantly positively O2-dependent through a
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Fig. 3 The relationship between UTL, measured as D, and plasticity for Upper Thermal Limits (DUTL) at four temperature intervals:

(a) 10–15 °C (y = "0.276x + 11.106, R2 = 0.826, F1,3 = 19.0, P = 0.012), (b) 15–20 °C (y = "0.366x2 + 25.504x – 406.748, R2 = 0.966,

F2,3 = 42.1, P = 0.006), (c) 10–25 °C (y = "1.077x + 40.623, R2 = 0.763, F1,3 = 9.7, P = 0.053) and (d) 10–20 °C (y = "0.176x2 + 10.739x –
157.930, R2 = 0.975, F2,3 = 19.0, P = 0.004) °C. DUTL is calculated as the difference between mean values of D either between consecu-

tive or extreme incubation temperatures (considering either 25 or 20 °C as upper extreme temperature). Data points represent individ-

ual species UTL (measured at the incubation temperature indicated in brackets) and DUTL; different symbols indicate different species:

P. elegans (circle), P. macrodactylus (triangle), P. serratus (square), P. varians (diamond), C. crangon (cross) and P. montagui (plus). Full and

dotted lines represent the best-fit significant (P < 0.05) and marginally significant (0.05 < P < 0.08) regression models, respectively.

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12695

10 S . MAGOZZI & P. CALOSI

Sherman, Elizabeth




logarithmic relationship (except in P. montagui – no
relationship), supporting the idea that aerobic scope is
maintained by increasing ṀO2 until a pejus temperature
is reached, then thermal tolerance becomes time-depen-
dent (P€ortner, 2001; Verberk & Bilton, 2011). The pejus
temperature is assumed to correspond to the point at
which the relationship between ṀO2 and UTL reaches
the asymptote. In this instance, species showing higher
metabolic plasticity (P. elegans and P. varians) possess:
(i) a lower ṀO2-control for UTL, and (ii) lower pejus tem-
peratures (i.e., the relationship between ṀO2, and UTL
in these species appears to tend to the asymptote at a
lower temperature). Again, compared to species inhab-
iting narrower/more stable thermal habitats, species
occupying broader/more variable thermal niches may,
therefore, be at greater risk from the sublethal effects of
global warming, since their scope for critical processes
such as locomotion, growth and reproduction is likely
to become compromised at a lower temperature.
Between-species differences in ṀO2-control for UTL

largely reflect between-species differences in Upper
Thermal Limits–Temperature (UTL–T) Reaction
Norms. Indeed, species showing a greater metabolic
control for UTL also possess greater plasticity of ther-
mal limits, indicating that oxygen-limitations may be
occurring at the whole-animal level (P€ortner, 2001; Ver-
berk & Bilton, 2011; c.f. Truebano et al., 2010).
A significant negative relationship between UTL and

plasticity of thermal limits was also found, with species
showing the highest UTL (C. crangon, P. varians and P.
elegans) also showing the lowest plasticity of thermal
limits. This suggests that the evolutionary trade-off
found in porcelain crabs (Stillman, 2002, 2003; see also
Bozinovic et al., 2011; Ara"ujo et al., 2013) may also
apply to the prawn assemblage examined here. In this
instance, given that prawns with the highest UTL and
plasticity of thermal limits are neither ecologically simi-
lar (i.e., type of thermal habitat) nor the most phyloge-
netically closely related, the evolutionary basis of such
trade-off cannot be inferred, highlighting the need of
exploring a larger phylogeny. However, it is relevant
for conservation and commercial purposes that P. ele-
gans, P. varians and C. crangon are likely to be less vul-
nerable to extreme acute temperatures when compared
to P. serratus and P. montagui. Once again, the invasive
species P. macrodactylus stands out showing both ele-
vated UTL and plasticity for thermal limits. Also, as
this species occurs in subtidal habitats, it is likely to
possess greater thermal safety margins (sensu Stillman,
2002, 2003; Deutsch et al., 2008; see also Diederich &
Pechenik, 2013; Overgaard et al., 2014), and may, there-
fore, be the least vulnerable species to extreme acute
thermal events. By contrast, the low UTL and low plas-
ticity of thermal limits observed in P. montagui, together

with their low ṀO2-control on UTL, further indicate that
this species is likely to be the most vulnerable to warm-
ing. An alternative, not exclusive, view is that P. monta-
gui shows very limited plasticity of both metabolism
and UTL because it is being exposed to temperatures
already above its pejus temperature.

Towards a more integrative prediction of species and
assemblage vulnerability to global warming

Integrating the investigation of metabolic performance,
thermal tolerance, and their plasticity helps to more
accurately elucidate species and assemblage vulnerabil-
ity to global warming (Bozinovic et al., 2011). Indeed,
while thermal tolerance and metabolic performance
represent useful measures of acute and chronic resil-
ience to warming respectively (Bozinovic et al., 2011),
plasticity reflects the extent to which taxa are able to
adjust their physiological abilities to the global change
(Ghalambor et al., 2007; Charmantier et al., 2008; see
also Murren et al., 2014). In the longer term, sublethal
temperatures associated with global warming are likely
to compromise organismal performance in critical pro-
cesses like locomotion, growth and reproduction
(P€ortner & Knust, 2007; Somero, 2011), which will ulti-
mately reduce species ability to maintain healthy popu-
lations at a specific location, possibly leading to local
extinctions and/or shifts along environmental gradi-
ents (Buckley, 2008; Kearney & Porter, 2009; Cheung
et al., 2010). Furthermore, these sublethal temperatures
are species-specific (c.f. Ara"ujo et al., 2013), leading to
changes in assemblage structure and dynamics includ-
ing new ecological processes such as niche competition
and species invasions (Milazzo et al., 2013). In the
short-term, taxa may be also threatened by the lethal
effects of global warming, especially due to increasing
intensity and frequency of extreme acute thermal
events (IPCC et al., 2012).
In the assemblage investigated, compared to species

inhabiting narrower/more stable thermal environ-
ments, species occupying broader/more variable ther-
mal niches are likely to be less vulnerable to extreme
acute thermal events (c.f. Diederich & Pechenik, 2013),
but may be at greater risk from the negative effects of
chronic exposure to warming (e.g., Folguera et al.,
2009). Within this study, P. montagui and P. macrodacty-
lus highlight the types of responses seen at the ends of
this acute/chronic response trade-off spectrum. The
former shows both extremely low thermal limits and
metabolic control, while the latter possesses high ther-
mal limits, elevated plasticity for these limits, and a
high metabolic control. On this basis, under future glo-
bal change scenarios, we predict that in the English
Channel area P. montagui may suffer a reduction in
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presence and abundance, while P. macrodactylus may
experience a further expansion (e.g., Bates et al., 2013).
In general, ongoing environmental changes may cause
shifts in the presence and abundance of the prawn
species along the European Atlantic coasts, leading to
considerable changes in assemblage structure and
dynamics, and ecosystem functioning, as already
predicted based on results from laboratory mesocosms
for other marine assemblages (e.g., Hale et al., 2011;
Christen et al., 2013). However, it must be noted that our
conclusions are solely based on responses of adult indi-
viduals for the species investigated. Future work should
include various developmental stages, accounting for
differences in stage-specific vulnerability, especially
since early life stages often represent physiological
bottlenecks (P€ortner & Farrell, 2008; Storch et al., 2011;
Bartolini et al., 2013). In any case, the greater under-
standing of the mechanistic basis of acute and chronic
thermal tolerance, and their evolutionary trade-offs,
achieved in our study can be used to implement conser-
vation policies aimed at protecting ecologically and
economically valuable resources (Bernardo et al., 2007;
see also Helmuth et al., 2005), such caridean prawns.
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