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Invertebrates are outstanding model systems for the study of

aggression. Recent advances and promising new research

approaches are bringing investigators closer to the goal of

integrating behavioral findings with those from other disciplines

of the neurosciences. The presence of highly structured, easily

evoked behavioral systems offer unique opportunities to quantify

the aggressive state of individuals, to explore the mechanisms

underlying the formation and maintenance of dominance

relationships, to investigate the dynamic properties of

hierarchy formation, and to explore the significance of

neural, neurochemical and genetic mechanisms in these

behavioral phenomena.
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Introduction
This review describes several invertebrate models in

which intraspecific aggression is readily evoked in dyadic

interactions between animals; these models enable stu-

dies to be performed at levels ranging from the behavioral

through the physiological and ultimately to the molecular

and genetic levels. Elegant models of interspecific aggres-

sion in invertebrates also exist [1], but these will not be

dealt with here. In the species described here, agonistic

behavior patterns appear to be pre-wired in the nervous

system, as animals with no previous social experience can

engage conspecifics in normal agonistic encounters. Dur-

ing such fights, paired animals exchange highly stereo-

typical behaviors that escalate through different intensity

levels and that, ultimately, result in a decision with

behavioral consequences for both winners and losers. A

common theme in these studies is that amines, peptides

and steroid hormones, substances that function as neu-

romodulators and/or as neurohormones, serve as impor-

tant modulators of aggression.

Aggression in social insects: bees, ants,
wasps and termites
It may be surprising that aggression is seen in social

insects, considering that selfish behavior is rare in groups

with shared reproductive interests, such as honey bee

colonies; however, stereotyped agonistic behavior within

a hive [2] is common during worker policing [3,4]. More-

over, aggression in the context of nestmate recognition

has been explored in ants [5,6], bees [7], wasps [8] and

termites [9] where the determination of self versus non-

self is frequently based on the expression of cuticular

hydrocarbon profiles [10,11]. With pheromonal com-

mands reflecting the collective needs of the colony

[12], many aspects of social behavior are under endocrine

and genetic control, including the reproductive division

of labor [13–15�], investments in reproductive individuals

[16], drone assassinations, queen execution by workers

[17,18] or queen duels [19]. As in many other systems,

agonistic success is fostered by physical superiority [20],

promotes reproductive opportunities [21] and correlates

with amine function [22].

Aggression in other invertebrates: spiders
and dragon flies
Ritualized displays and cues that are predictive of ago-

nistic success enable the assessment of a rival’s relative

fighting ability, in particular, in species with dangerous

weapons, such as spiders [23]; the strategies that underlie

aggression and intraspecific, intersexual cannibalism in

this group [24–26] are shaped by the structure of the

population [27]. Dominance enhances feeding opportu-

nities in dragon flies [28] but few physiological studies

that relate specifically to aggression have been carried out

using these models.

Aggression in non-social insects: crickets
Detailed electrophysiological studies have been carried

out in crickets, particularly looking into acoustic signal-

ing. (Singing is used in mating behavior and in aggression

in crickets and other insects [29].) Amine neuron systems

(serotonin, octopamine, dopamine and histamine) have

been fully mapped in cricket nervous systems, including

those systems present in the brain and the ventral nerve

cord (reviewed in [30]). Depletion of nervous system

amines, either globally using reserpine or selectively with

blockers of synthesis specific for serotonin or for octopa-

mine/dopamine, produces alterations in aggression, but

these effects are subtle [31]. Although reserpine depletes

the nervous system of all amines and produces lethargic

behavior, crickets are able to fight at different levels of

intensity. Selective depletion of serotonin had no effects

on fighting behavior, whereas octopamine/dopamine
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depletion lowered the intensity of fights. The authors

conclude that octopamine and/or dopamine are not

required for the function of motor circuits involved in

aggression, but that they do seem to play a role in

releasing the behavior in response to appropriate stimuli.

Other studies report that brain levels of serotonin are

lowered in losing males during fights, but only if the wings

that are important in singing behavior are intact [32].

Removal of the wings results in lowering of brain sero-

tonin in both winners and losers of fights. Injections of the

opioid antagonist naloxone enhanced aggression in losing

male crickets and in females [33], while injection of a

vertebrate m-opioid agonist reduced aggression in male

winners. These results suggest that status-specific effects

must be considered when injecting drugs into winning

and losing animals for this kind of study. Interestingly, it

has been demonstrated that forcing losing male crickets

to fly after agonistic encounters rapidly restores their

willingness to fight [34]. This fact, well known to gam-

blers involved in cricket-fighting, requires an intact ven-

tral nerve cord between the brain and the thoracic

segments of the nerve cord.

Crustacean models of aggression
The first anatomical and physiological studies with crus-

tacean species were performed more than 100 years ago.

Indeed, the eminent figures TH Huxley, S Freud and G

Retzius conducted extensive early anatomical studies on

the nervous systems of these organisms. In the mid-

twentieth century, fundamental questions of synaptic

physiology were answered by B Katz, SW Kuffler, P Fatt,

CAG Wiersma and others, due to the anatomical simpli-

city of their peripheral nervous systems of the crustacean

models. These same systems now provide exciting infor-

mation on neuronal function at a ‘systems’ level; thus,

important studies with the crustacean stomatogastric

ganglion describe, at the level of identified neurons,

how modulation affects the output of a neural network

[35]. A more recent frontier in which, once again, crus-

tacean models offer opportunities that are not readily

available with other species, is in the study of social

behavior. Crustaceans such as crayfish and lobsters appear

to be ideal for exploration of the neural basis of aggression

because: (1) their structurally elegant, modular neural

systems feature relatively few, large aminergic neurons,

whose distribution has been mapped and whose physio-

logical properties have been defined [36�,37��]; (2) the

behaviorally relevant neural circuits have also been

mapped [38�–40] and socially modulated changes in these

circuits that relate to amine neuron function can be

observed [39,41��]; (3) amine levels can be both mon-

itored [42] and experimentally altered [43–46]; (4) stereo-

typed behavioral acts can be represented by quantitative

measures in many contexts [47] and finally; (5) crustacean

individuals maintain a fundamentally solitary existence,

with dominance resulting largely from physical super-

iority. By contrast, fighting success in other systems is

often determined by an ability to form coalitions or by

differential treatment of kin.

Agonistic meetings between crayfish or lobsters in con-

trolled laboratory situations feature a series of highly

structured behavioral acts, with escalation being governed

by strict rules. Fights progress through ritualized visual

displays, antennae whipping, claw lock, wrestling and, if

physical asymmetries are only minor, brief periods of

unbridled claw use [48–50]. The expression of particular

fighting strategies varies with hunger states [51], body

size [52] and previous agonistic success [53]. Although

fighting frequently serves to obtain or defend resources,

such as shelter [54] or mates [55], its occurrence, parti-

cularly in the absence of a resource, suggests an inherent

predisposition towards agonism [56,57].

As in other groups, amine neuron systems (serotonin and

octopamine) are implicated as key physiological regulators

of agonistic behavior and social dominance in crustaceans

[37��,42], but controversy surrounds the experimental

results in this area and their interpretation by different

authors. Acute, experimental injections of serotonin and

octopamine in lobsters (Homarus americanus) produced

postures resembling those seen in dominant (serotonin-

like posture) and subordinate (octopamine-like posture)

animals during and after agonistic encounters [58]. It was

these observations that inspired the detailed examination

of the roles of amines in aggression in crustaceans by

many authors, using a variety of species. Postural changes

and enhancement of aggression were recently reported in

a second lobster species (Munida quadrispina) [59]. Acute

and constant infusion of serotonin in crayfish (Astacus
astacus) produces aggression with a unique specificity:

after a delay of 10–30 min, treated individuals engage

larger opponents in prolonged bouts of fighting, even in

instances that carry substantial risk of injury [46,50,60�–
62]. Conversely, in a different species of crayfish (Pro-
cambarus clarkii), serotonin injections produced postural

changes that did not resemble those seen during agonistic

encounters; serotonin injections also reduced levels of

aggression in agonistic encounters, whereas a serotonin

analogue enhanced aggression [43]. In interpreting these

observations, other authors do not focus on a direct role for

serotonin in decapod aggression; instead, they suggest

that serotonin treatment in H. americanus might indirectly

affect social interactions through an inhibition of retreat

in the losing animals [63]. Crayfish with lowered serotonin

levels (Orconectes rusticus) are indistinguishable from con-

trols in terms of fighting behavior [45], but serotonin-

depleted lobsters showed enhanced levels of aggression

[44], similar to those initially reported when serotonin

levels were raised in lobsters and crayfish [60�]. One

interpretation of such apparently contradictory results

focuses on the possibility that levels of serotonin within

a narrow window of concentration might have to be

released at the correct time and place in the nervous
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system for normal behavioral modulation. If this is so,

then pharmacologically elevated or lowered levels of

serotonin (or other modulators of behavior) could produce

similar or different behavioral phenotypes, depending on

the species examined and the multiplicity of effects

mediated by the pharmacologically altered substance.

A novel model system: aggression in male
fruit flies
Despite the wealth of information gathered from inverte-

brate models of aggression and that of the roles of amines

such as serotonin and octopamine in this behavior, little, if

any, information exists on exactly how amine neurons

function during fighting. Do their firing rates change? If

so, are the changes seen before, during or after fights?

What are the consequences of such changes? The major

difficulty that is shared by invertebrate and vertebrate

models, is that the physiological activity in these neurons

cannot easily be monitored while animals are fighting;

thus, although hypotheses are abundant, we are left with

the unsatisfactory conclusion that amines clearly are

instrumental in aggression, but how they serve this role

remains unknown.

One experimental approach that is not readily available in

most invertebrate models, is the use of genetics and the

accompanying powerful genetic experimental methods;

thus, there are no inbred lines of lobsters, crickets or

crayfish, and their genomes have not been sequenced.

Molecular approaches, including RNAi, probably can be

used with these species but it would be on an individual

animal basis and would not involve the generation of

experimental lines of, for example, highly aggressive

animals. In all respects, other than the size of their

neurons, fruit flies would be an ideal species to use,

providing that robust patterns of aggression can be trig-

gered in these animals under ethologically acceptable

experimental conditions.

Aggression and territoriality are well-known in certain

Hawaiian species of fruit flies [64,65]; what is less well-

known, however, is that aggression also exists in common

highly inbred species of fruit flies (Drosophila melano-
gaster). Originally described by Sturtevant in 1915 [66],

other investigators have also reported an aggression in

fruit flies during the period 1960–1990 [67–70]. This early

work described many of the comprising components of

the behavior, but in experimentally difficult scenarios

involving many individuals. This was simplified recently

to only a pair of male flies in a chamber with a small food

cup and a headless mated female, illuminated from

above. The food, potential mate and light serve to attract

males to the surface, and within a few minutes both flies

move onto the food cup, where they commence a series of

encounters [71��]. The flies used in these fights are

isolated as soon as they emerge as adults, and kept for

3–4 days in small test tubes containing food. Using these

experimental conditions, an ethogram of the behavior was

assembled, transition matrices were constructed and a

Markov Chain analysis produced a quantitative analysis of

the behavior. Flies meet and engage in encounters about

once a minute. These encounters show varying intensity

levels (Figure 1) and an average duration of 11 s; this

varies proportionately with the intensity level. A hier-

archical relationship is established relatively early in

fights, but losers can continue to re-engage winners for

several hours. With the behavior well characterized in a

relatively simple experimental paradigm, one can now

begin to take advantage of the powerful genetic methods

that are available.

Mutant studies of aggression in flies
A few publications have explored the effects of selected

classical mutations and chemical modifications of neuro-

transmitter levels on fighting behavior of flies. Ebony flies

fail to incorporate b-alanine into their cuticles and black
mutants show decreased synthesis of the same amino

acid. These defects, in normal cuticular tanning, result

in an early onset of courtship and enhanced territoriality

[68]. A more recent study [72] has corroborated the results

of earlier studies, which used the b-alanine mutants, and

has explored the roles of dopamine and serotonin (using

precursors of the amine or blockers of amine synthesis),

octopamine (using a null mutant) and mushroom bodies

(examined using transgenic animals expressing tetanus

Figure 1

(a) (b)

(c) (d)

The components of fighting behavior in adult male fruit flies: (a) wing

threat, in which both wings are elevated for a sustained period of time.

This is often seen early in fights; (b) fencing, in which animals push

off with one of their legs in a sideward or forward direction; (c) boxing,

in which both flies rise on their hind legs and thrash at each other

with their forelegs; (d) chase, seen when a hierarchical relationship

has been established, with the winner pursuing the loser who will either

fly from the food surface or retreat to the edge of the food dish.

Reprinted from [69], in a slightly modified form, with permission.
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toxin in output neurons of the mushroom bodies). The

experimental protocol that was used here was compli-

cated, with six males and three mated females in a

chamber at the same time. The scoring system used

was also complicated; however, the results successfully

indicated that octopamine null mutants and flies with

reduced synaptic output from the mushroom bodies

showed reduced aggression, whereas, flies with elevated

dopamine showed somewhat reduced aggression. Altera-

tion of serotonin levels had no effect on aggression. It

should be noted that many important controls were not

included in these studies, which, according to the authors,

were preliminary. Repetition of these studies, using a

more simplified experimental protocol, with conditional

mutant lines of flies would greatly help to interpret the

observed results.

Much more powerful genetic methods are available for

behavioral studies on aggression with flies, however, than

have been reported thus far. These include conditional

expression of mutations in the fly brain, whenever and

wherever desired. One example is the GAL4/UAS sys-

tem, originally described by Brand and Perrimon [73]. In

this method, a cross between two transgenic lines of flies

(one expressing the transcription factor GAL4 in subtypes

of neurons, the other expressing the binding site for

GAL4, driving expression of any desired gene) yields

progeny in which desired genes are expressed in subtypes

of neurons in the fly brain. In preliminary studies, we have

expressed GAL4 in dopamine and serotonin neurons or

selectively in dopamine neurons to drive expression of a

temperature-sensitive mutant form of the protein dyna-

min in those cells [74��]. This protein behaves normally at

258, becoming mutated at 308 and leading to a rapid block

of vesicle recycling and hence of synaptic transmission at

the elevated temperature [75�]. In preliminary studies

(unpublished observations), we have observed decreased

numbers of encounters between flies at the elevated

temperature, using both GAL4 lines. Further experi-

ments with this and related technology should yield

valuable information about the role of subtypes of neu-

rons in aggression in flies.

Aggression in female flies
As with male flies, Sturtevant was the first to mention

aggression in female flies, in this case, directed towards

males: ‘occasionally a female seems to frighten off a male

by spreading her wings and moving quickly towards him’

[66]. A second mention of aggression in females came in a

study comparing mating success in ebony and light males

of freshly isolated D. melanogaster [65]. A more complete

study of aggression in females was published last year,

however, by Ueda and Kidokoro, using the common

Canton-S strain of D. melanogaster [76��]. They observed

and scored three patterns of female aggression, including

‘approach’, ‘lunge’ and ‘wings erect’. The authors report

that these patterns ‘are similar to those of male aggression

in this species’ but that they differ from the patterns

shown in female rejection behavior during courtship.

Females show enhanced fighting if live yeast are growing

on the surface of the food dish; conditioning female flies

to the yeast food source �12 hours before their fights,

reduced the extent of fighting. This was interpreted as a

possible adaptation to the enriched food source. Higher

levels of aggression were seen when newly emerged

females were held in isolation before the fights, in com-

parison with females held in groups of ten in a vial. Thus,

both housing conditions and the quality of the food source

influence fighting behavior in female flies, and, as with

males, newly emerged females began to show aggression

only a day after their emergence as adults.

Recently, we confirmed those behavioral patterns

reported by Ueda and Kidokoro [76��], but also noted

that specific differences are seen between the behavioral

patterns in male and female D. melanogaster (unpublished

observations). Certain patterns are seen predominantly in

male flies, not in females (extended-duration wing-threat,

boxing, tussling, holding and chasing), whereas, other

patterns are seen mainly in females and not males (lung-

ing with head butting, front limb fencing in an elevated

posture). The remaining offensive and defensive patterns

beyond these (for ethograms of male fighting behavior see

[69]) are shared and seen in both males and females.

Of particular relevance here, is a report by Lee and Hall

of a new behavioral phenotype seen in fruitless ( fru)

mutant male flies [77]: enhanced head interactions.

Fruitless male flies court other males, forming long court-

ship chains, and show abnormal patterns of wing vibra-

tion during courtship, but otherwise appear capable of

mating with females, depending on the fru mutant sub-

type [78]. In addition to enhanced head interactions,

fru mutant males reportedly do not display boxing, which

is a common high intensity component of male fruit fly

fighting behavior. The head–head interactions are not

seen during the first day after eclosion; their occurrence

increases to a maximum 4–5 days later, in parallel with

the chaining behavior.

These results raise an interesting question: does the fru
mutation, with its well-studied effects on mating beha-

vior, also direct the expression of female patterns of

fighting behavior in the brains of male fru mutants?

Are male- and female-specific patterns of fighting beha-

vior specified in the brains of fruit flies after gender has

been defined by the sex-determination hierarchy of

genes? Is there an aggression-determination hierarchy

of genes? Are male- and female-specific patterns of

aggression defined as units in the brains of flies or can

components of the behavior (like head butting in females

and tussling in males) be transferred as individual mod-

ules into male and female brains, using methods of

genetic manipulation? The fruit fly model offers exciting

Aggression in invertebrates Kravitz and Huber 739

www.current-opinion.com Current Opinion in Neurobiology 2003, 13:736–743



Table 1

Aggression studies in various species of invertebrates (a partial listing, including only articles cited in this publication)

Ethology Physiology Amines References

INSECTS (social)
Bees �

Apis mellifera þ þ [2,13,14,15�,19]

Apis florea þ [3]

Apis cerana þ [4]

Andrena scotica þ [7]

Panurgus calcaratus þ [7]

Bombus terrestris þ þ [22]

Ants
Formica pratensis þ [5]

Formica exsecta þ [12]

Linepithema humile þ [6,10,11,17]

Soleenopsis invicta þ [16,18]

Cataglyphis niger þ [20]

Odontomachus brunneus þ [21]

Termites
Reticulitermes spp þ [9]

Wasps
Vespa crabro þ [8]

INSECTS (non-social)
Dragon flies

Pachidiplex longipennis þ [28]

Crickets �

Gryllus bimaculatus þ þ [29–34]

Fruit flies �

Drosophila melanogaster þ y þ [67-70,71��,72,76��,77,78]

Drosophila simulans þ [70]

Drosophila sylvestris þ [64,65]

Drosophila heteroneura þ [64,65]

Drosophila ampelophila þ [66]

CRUSTACEANS
Lobsters �

Homarus americanus þ þ þ [36�,37��,44,49,58,60�,61,63]

Munida quadrispina þ þ [59]

Crabs
Carcinus maenas þ � þ [42]

Crayfish �

Orconectes rusticus þ þ [45,46,48,50–52,55]

Astacus astacus þ � þ [60�,62]

Procambarus clarkii þ þ þ [39,41��,43,56]

Pacifastacus leniusculus þ þ þ [40,54]

OTHER ARTHROPODS
Spiders �

Dolomedes triton þ [26]

Misumena vatia þ [27]

Portia spp. þ [23]

Latrodectus hasselti þ [24]

The table lists species in which: (i) ethological studies on aggression have been conducted (ethology); (ii) physiological and/or anatomical studies

directly relating to aggression have been conducted (physiology); a role of amines in aggression has been demonstrated (amines).
� Anatomical and/or electrophysiological studies using intracellular and/or extracellular recording methods have been conducted in these species,

but these are not directly related to aggression.
y Genetic studies related to aggression have been conducted.
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possibilities for the identification of genes involved in

producing patterns of a complex behavior like aggression

in nervous systems. The shaping of these patterns, by

experience and by hormones, throughout the lives of such

organisms can then be fully elucidated.

Conclusions
Aggression is seen and has been studied behaviorally in

many invertebrate species (Table 1), including social and

non-social insects, other arthropods and crustaceans. In

many of these species, detailed physiological and anato-

mical studies are now possible; they have been performed

in relatively few of the insect species (mainly crickets and

bees), but more widely among the crustaceans. Crusta-

cean species are exciting because they enable the study of

aggression to the level of the individual synapses, neurons

and circuits that are key to this behavior. In all inverte-

brate systems examined thus far, altering the levels or

function of amine neurons causes important changes in

aggression; in one particular model, changes in status are

accompanied by alterations in the function of certain

synaptic regions relating to amines. Despite this progress,

which goes far beyond our knowledge of vertebrate sys-

tems, no clear picture has yet emerged of exactly how

amines modulate or alter the behavior. Recent experi-

ments using fruit flies as a model for aggression have

introduced the possibility of adding powerful genetic

methods to the armamentarium of tools that are available

for the study of aggression in invertebrates. Ultimately,

this will allow investigators more insight into how this

complex pattern of behavior is assembled in the nervous

system and should shed further light on the role of

modulators in the behavior.
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