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DISPERSAL (see Glossary) is one of the most important
life-history traits involved in species evolution and
persistence [1–4]. It is also the primary determinant
of CONNECTIVITY among local populations, which is a
vital parameter for conservation strategies based on
protected areas [5]. In addition to the intrinsic
importance of dispersal for fundamental science,
recent evidence of impacted fish stocks [6] and our
growing awareness of coral reef degradation by
human activity and climate warming [7] highlight 
the need for accurate understanding of dispersal. 
For demersal and benthic marine organisms with

pelagic larval stages, delineating patterns of dispersal
remains a major challenge, both because the
dispersing organisms are minute and difficult to
track, and because dispersal is driven by multiple
complex factors. Because of the potential for transport
of propagules by currents, early work assumed that
larval dispersal was largely passive, with an extent
that was dependent on patterns of water movement
and duration of larval life. Thus, local populations
were expected to be replenished largely by larvae
derived from elsewhere [5,8].

Fish of coral reefs typically have larval lives that
are measured in weeks or months, but their larvae are
capable behaviorally of participating actively in their
own dispersal [9–14]. These attributes are compatible
with various patterns of dispersal [11], but ecologists
of reef fish have increasingly tended to emphasize that
fish larvae remain in the vicinity of the natal reef
[15–17]. Whereas the view in the late 1970s was that
reef-fish populations were broadly open, the consensus
has shifted to view them as substantially closed [15–22].
This change relies on a variety of evidence, including
physical oceanography near reefs [16], larval behavior
[9], tagging studies [18–19] and genetic patchiness
among geographically separate populations [2,23]. 
It is also supported by some recent models of dispersal
[22], and conforms to theoretical expectations that
marine populations must achieve CLOSURE by

Dispersal plays a crucial role in several aspects of the biology, management and
conservation of many species, including coral reef fish and other demersal
marine organisms with pelagic larval stages. To know the origin of propagules
that replenish benthic populations is a major challenge, yet, whereas earlier
studies emphasized the broadly extensive dispersal of reef fish larvae, recent
publications have emphasized the extent to which these larvae succeed in
returning to their natal populations. Here, we critically analyse the evidence
concerning the dispersal of coral reef fish, and conclude that: (1) at present, the
extent to which reef fish populations are open or closed must be regarded as
unknown; and (2) further improved research is likely to confirm that larval
dispersal structures populations into more or less open populations depending
on the particular attributes of species, physical oceanographical systems in
which they occur and the scale at which the question is posed.
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developing life histories that retain offspring as
‘members’of the reproductive unit [20–21]. Here, we
critically analyse the evidence concerning dispersal in
reef fish, identifying limitations in techniques and in
data interpretation. At present, these limitations
prevent an accurate assessment of the extent to which
reef fish populations are replenished by local or
exogenous recruits.

Scales of dispersal
The description of any system depends largely on 
the chosen dimensions of space and time. At
biogeographical spatial scales, all populations are
closed, whereas at meter scales, any population of
organisms with pelagic larvae is likely to be open.
Whereas most of the ecological investigations of fish
on coral reefs were done at single local sites in the
1970s, it is now common to do research at sets of sites
10s of km apart [18–19]; some studies are undertaken
on scales of 100s of km or more [24–25]. Therefore, 
the change in emphasis concerning the degree of
openness of reef fish populations might be due
partially to a shift in the scale at which they are
routinely viewed. Nevertheless, although spatial and
temporal scales at which studies are done can have
important effects on how ecological patterns and
processes are perceived, this is not the main
limitation in studies of larval dispersal in reef fish.

Evidence for dispersal in reef fish
Tagging studies
By using tags to differentiate larvae from different
populations, two studies have provided quantitative
evidence for SELF-RECRUITMENT in coral reef fish. Over
three months, Jones et al. [18] used tetracycline to tag
~10 million embryos of the damselfish Pomacentrus
amboinensis around Lizard Island, Great Barrier
Reef, Australia. Analysing the otoliths of 5000
recaptured late-stage larvae, they found 15 tagged
larvae and calculated that between 15% and 60% of
the recruits to that island were locally produced.
Unfortunately, this imprecise estimate means that
this population might be either almost entirely open
(85% of recruits from elsewhere) or moderately closed
(60% of recruits produced in situ). In addition, their
estimate of self-recruitment might also be biased
upwards. Most effort for collection of larvae was done
on the windward side of the island, a location where a
retentive CONVERGENCE ZONE occurs owing to complex
patterns of water flow [26,27]. A broader distribution
of sampling effort around Lizard Island might have
led to a lower estimate of RETENTION.

The other study of larval tagging, by Swearer et al.
[19], was based on the assumption that larvae
developing in coastal waters have distinctive
signatures (e.g. in growth and otolith microchemistry)
compared with larvae developing in less productive
open water. During three summer months in 1992,
Swearer and colleagues found that ~70% of
Thalassoma bifasciatum wrasse recruits to St Croix,

US Virgin Islands, presented signatures of coastal
development. They suggested that these were evidence
that larvae remained close to home and were recruited
to the natal population. One limitation, noted by the
authors, is that, if the time spent in open water was
minimal, larvae might have coastal signatures, despite
coming from outside St Croix, (conversely, animals
produced and settled locally might have off-shore
signatures after spending most of their larval life in
off-shore waters). Based on the minimum number of
days necessary for a larva to produce a coastal
signature, Swearer and colleagues predicted that up to
50% of larvae with coastal signatures might have been
produced on upstream reefs (i.e. elsewhere in the
Lesser Antilles). This estimate implies that, during
those three summer months, as few as 35% of the
recruits of this wrasse to St Croix might be produced
locally. During the autumn of 1992, most recruits to
this island presented signatures of open ocean
development [19]. Rates of RECRUITMENT in the sites
sampled by Swearer et al. tend to be similar during
summer and autumn (~1.1 and 0.95 fish m−2

respectively [28]). Thus, the overall extent of retention
might be less than that implied by Swearer et al. [19].

Overall, the study by Jones et al. [18] confirms, and
that by Swearer et al. [19] strongly suggests, that
these local populations of reef fish retain some larvae,
but might also receive significant recruitment from
other locations. The generalization of these results
requires additional studies, which should involve a
range of hydrographical regimes, including simpler
coastlines with long-shore currents [29]. Although
these two studies have motivated renewed interest in
reef fish dispersal, their results provide only tentative
support for retention as the motor driving the
replenishment of reef fish populations.

Genetic comparisons
Variation in genetic markers, such as allozymes and
mitochondrial DNA (mtDNA) among sub-populations
(commonly quantified using fixation Index Fst) has
been used to track patterns and levels of migration in
reef fish [1,2]. However, several aspects of genetic
studies become crucial when addressing questions of
reef fish demography. Demographic studies require,
for instance, that markers are able to drift
distinctively among populations at temporal scales
that are relevant to population replenishment
(usually months). Allozymes and mtDNA are,
however, not very sensitive to drift, particularly 
in large populations and over short periods [30].
Results based on allozymes and mtDNA are usually
interpreted as a reflection of long-term processes, 
not on timescales that are relevant to population
demography [1,30]. Microsatellites are promising
markers that are not yet used for demographic
studies of reef fish. They present high levels of
polymorphism, and are probably neutral to selection.
Their high rates of mutation also make them suitable
for tracking genes on ecological timescales [1,30].
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In interpreting genetic data, it is also important 
to consider the forces that are influencing genetic
structure. A common assumption is that genetic
structure reflects a balance between gene flow and
drift. Yet, selection can be a major force maintaining
genetic differentiation even when gene flow is
occurring [31]. In coral reef fish, rates of mortality are
high, with up to 70% occurring during the first few
days after SETTLEMENT [32]. This mortality is, in many
cases, associated with variations in attributes, such
as body condition [33], size [32], and possibly speed [34],
and with habitat characteristics [35], suggesting that
there might be substantial and differential selection
among populations at and shortly after settlement. 
In fact, comparative studies between allozymes
(selective markers) and mtDNA (neutral markers)
show different results [1,2,30] suggesting that there

are effects of selection on allozymes and raising
caution when interpreting data based on these
markers (currently 73% of the available data for 
reef fish [2]). Thus, genetic differentiation might
support the existence of CLOSED POPULATIONS (genetic
differences arising through drift) or open ones
(genetic differences arising because of differential
selection in spite of gene flow). Genetic differences
might also suggest the existence of barriers to
dispersal, even though populations on each side of 
the barrier remain otherwise open [36,37].

At equilibrium (no selection included), as few as
1–10 effective migrants per generation will eliminate
genetic differences between populations with 95%
confidence [1–2]. Thus, genetic similarity among
populations might suggest either that populations are
broadly open (with substantial migration), or largely
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Late-stage larvae can orient toward different reef stimuli [a] and are
capable of independent movement [they can swim at field speeds of
between 5 and 50 cm s−1 (20 cm s−1 on average [b]), and long enough to
cover between 4 and 200 km before exhaustion depending on the
species, [b-c])]. It seems probable, therefore, that reef fish larvae can
navigate over large distances and towards reefs [a–d]. However, there
are several problems with this conclusion.
• How reliably can fish orient towards reefs? Reef sound has been

suggested to be the most probable stimulus for orientation [e–g]. Reef
sounds are measurable at least 10 km from a reef [g], but physiological
evidence suggests that larval hearing is not sufficiently acute to detect
them [e], and field results show little behavioral response at distances of
>1 km [f]. During the first pelagic day (when the eggs or larvae still lack
swimming abilities), at a common current of 20 cm s−1, a larva could be
carried as far as 17 km away from a reef; thus, early in their life, larvae
could be transported far from cues with which to locate reefs, especially
the natal reef, and would therefore be unable to navigate. In addition, the
ability to detect a cue does not automatically mean that the cue can be
used reliably to determine a direction to find its source [g].

• What is the true extent of their swimming abilities? Laboratory studies
have shown that late-stage larvae of many reef fish species are good
swimmers, but how well do these skills transfer to natural conditions?
First, published records of distances swum might be biased. They might
overestimate abilities, because, in nature, it is unlikely that a larva will
swim until exhaustion, as they do in the laboratory. They might also
underestimate abilities, because the larvae are not fed during most
experiments (one recent study shows that feeding does enhance
swimming ability in one species [h]). There are also several reasons to
believe that larvae do not swim continuously in the field. Swimming
represents an energetic cost [i], which has negative effects on survival
subsequent to settlement and recruitment [j]. Movements of larvae
(e.g. when they are swimming) are also a cue for predators that detect
the movements and turbulence of their prey [k]. Finally, significant
displacement might increase the chance of encounters with predators.

• Are ecologists of reef fish overestimating the importance of swimming
capabilities to dispersal? Fisher and Bellwood [l] have recently found that
the sustainable swimming time decreases exponentially with increasing
speed. They suggest that the abilities of larvae to avoid advection are
limited to speeds below a threshold that can be maintained for a
period of between 12 and 48 h. This is 7 cm s−1 in the late-stage larvae of
the damselfish Amphiprion melanopus or 50% of its U-crit (maximum
swimming speed maintained for 2–5 min). U-crit in late-stage larvae of
other species is 30 cm s−1 on average (n = five species, [d,m]) and
4.7 cm s−1 in newly hatched larvae (n = three species [d]). This suggests
that currents of 7 cm s−1 that last more than 12–48 h might not be
overcome by late-stage larvae of A. melanopus; for other species, on
average, late-stage larvae might be able to overcome currents slower
than 15 cm s−1, whereas early-stage larvae might cope with currents of
only 2.4 cm s−1. A substantial component of the spectrum of current

speeds that are likely to be encountered by larvae (5–60 cm s−1 is usual)
will be too strong to be actively resisted, even if the larvae could orient
themselves to swim against it.

• There are also problems inherent to behavioral research, because
behavior is a particularly labile characteristic of an animal’s phenotype.
Are larvae that were caught, held overnight and then placed into
experimental apparatus or back in the ocean with divers in attendance
likely to behave as they do naturally?

• Our final concern is about data interpretation. At present, all larval
behaviors have been analysed with reference to dispersal. However,
navigation to locate settlement places is just one although the final
crucial objective of a larva during its pelagic stage. Larvae must also
swim and orient towards food and away from predators.
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Box 1. Navigation by reef fish larvae: what do we really know?



closed (genetic similarities arising because of the
exchange of only a few individuals). Although the
growing numbers of genetic studies on coral reef species
suggest that dispersal is not usually as extensive as has
been believed [2], answers using genetic data are not yet
conclusive. More studies, particularly with rapidly
evolving markers, are needed.

Larval behavior
Recent studies have highlighted the fascinating and
diverse spectrum of behavior in reef fish larvae.
Larvae of coral reef fish have good swimming abilities
and sensory systems that enable them to control their
dispersal (Box 1, [9–14]). However, it is not yet known
whether they do this, and if they do, whether they use
their abilities to enhance retention or dispersal.

Although there is a clear need to include larval
behaviors when modelling larval dispersal [11–13,38],
it is also clear that larval behavior (and other
biological data) exhibits substantial interspecific
variability. For instance, the pelagic period ranges
among species from >100 to <10 days, and a handful 
of species lack it completely [10,39]. Swimming
abilities also vary broadly among species (Box 1).
Furthermore, swimming abilities, sensory systems
and behaviors, such as vertical migration (Box 2), all
develop during the larval period [10,39–41], so that
even species with appropriate dispersal behavior
achieve this capability at different ages, and have a
period of passivity early in their life. Given the large
set of physical oceanographical features with
advective and retentive characteristics (Box 3), this
behavioral variability ensures that the extent to

which larvae are retained will vary among locations
(because of spatial differences in oceanographical
conditions), and among species within a locality
(because of interspecific variability in responses 
to the physical environment). Recognition of this
cross-species and cross-locality variation must be 
part of the debate on the nature of dispersal in 
reef fish [42–44].

Dispersal models
In the absence of a direct way to track reef fish larvae
through their entire pelagic phase, modelling
approaches have been used to infer patterns of larval
dispersal [5,22,45]. By considering the complex set of
variables affecting the larval period (Fig. 1), models
can be used to explore the importance of particular
features, and to make predictions about larval
dispersal. Nevertheless, a characteristic common to
most models to date is the omission, or gross
simplification in modelling of many factors affecting
the larval period, with the result that model outputs
cannot yet be assumed to predict dispersal accurately.
Roberts’ [5] model, for instance, has been strongly
criticized, because it did not include larval behaviors,
such as swimming ability [43] or vertical migration [44].
Schultz and Cowen [45] included larval duration as a
variable in their model, but did not consider larval
swimming abilities. Capable swimmers could either
enhance or reduce ADVECTION effects owing to other
model components [12]. Cowen et al. [22] included
values for diffusion based on passive particles, but the
larvae of many reef fish species have demonstrated
some ability to aggregate actively in the pelagic
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Reef fish larvae have been suggested to respond behaviorally to
vertically stratified flows in ways that result in retention close to shore
and to the source population (Box 3, [a]). This suggests that vertical
migration is a response to different current directions at different depths.
Certainly, many other physical or biological stimuli (e.g. light,
temperature, food availability and predation) have been proposed to
explain vertical migrations in fish larvae [b–c] and, in these cases,
resulting horizontal displacement because of vertical migration would
be random, depending on local currents.

There are two ways in which vertical migration could result in
predictable horizontal transport. Either the species lives predominantly in
regions where vertically stratified flows are a widespread and consistent
feature that reliably transport water at specific depths towards shore, 
or the animal has the capacity to measure current directions and act
accordingly. In the first case, evolution of a fixed pattern of vertical
migration is probable, regardless of the cue used, and results in reliable
transport (perhaps back to the natal shore). In the second case, more
flexible migration behavior could be used, the larva positioning itself in
the layer of water travelling in the preferred direction. Although, this
second case is seductive, it requires much of the larva. There are no fixed
references in the pelagic realm, so the larva would need the equivalent of
a geographical positioning system plus knowledge of where to go. Such a
navigation system might exist, but there is not yet evidence for it. Still, the
recent discoveries of a magnetic receptor in a fish [d], and geomagnetic
orientation in several vertebrates, suggest that there might be a common
and sophisticated mechanism of orientation among these animals [e].

Even if vertical migration is an adaptive response used by larvae to
return home, it does not appear to be a widespread adaptation among
reef fish. Vertical distributions are diverse among species. Some species

can be homogeneously distributed throughout the water column [c,f],
whereas others present aggregated distribution at particular depths,
sometimes depending upon the THERMOCLINE [b,f]. Finally, premises about
vertical migration require some caution, because they are based on
quite limited field studies of larval distributions. Reliable data about
larval distributions are few because reef fish larvae are usually sparse,
they are difficult to sample, no sampling device can capture all
developmental stages [f], and few studies have used multiple sampling
devices. Most standard sampling designs also appear to underestimate
the abundance of larvae in offshore locations [g].

References
a Cowen, R.K. (2002) Larval dispersal and retention, and consequences for

population connectivity. In Coral Reef Fishes. Dynamics and Diversity in a
Complex Ecosystem (Sale, P.F., ed.), pp 149–170, Academic Press.

b Nielson, J.D. and Perry, R.I. (1990) Diel vertical migrations of marine fishes:
an obligate or facultative process? Adv. Mar. Biol. 26, 115–168

c Hendriks, I.E. et al. (2001) Vertical distributions of late stage larval fishes in
the nearshore waters of the San Blas Archipelago, Caribbean Panama. 
Coral Reefs 20, 77–84

d Diebel, C.E. et al. (2000) Magnetite defines a vertebrate magnetoreceptor.
Nature 406, 299–302

e Brown, K. (2001) Animal magnetism guides migration. Science 294, 283–284
f Leis, J.M. (1991) The pelagic stage of reef fishes: the larval biology of coral

reef fishes. In The Ecology of Fishes on Coral Reefs (Sale, P.F., ed.),
pp. 183–230, Academic Press

g Clarke, T.A. (1995) Larvae of near-shore fishes in oceanic waters of the
central equatorial Pacific. Pac. Sci. 49, 134–142

Box 2. Vertical migration of larvae and consequences for larval dispersal



environment [10,17]. In this case, the pattern of
diffusion could be very different to that modelled
under passive dispersal [46]. Cowen et al. [22] also had
to estimate larval mortality rates. Although larval
mortality is generally assumed to be high, there are
very few empirical data available. That larvae of reef
fish can be collected several 100 km away from the
nearest reef [47–49] proves that some fish larvae
survive and do disperse far into the ocean, in numbers

that are sufficient to show up in small plankton nets [3].
The model developed by Cowen et al. does not show
this, which suggests either that the model might be
unrealistic or that the distribution of larvae in open
waters is far patchier than has been supposed.

The difficulty of simulating the complex world in
which larvae move (Fig. 1) explains many of the
discrepancies between empirical data and model
predictions. For instance, Roberts [5] predicted a
general pattern of larval dispersal over long
distances, based on very simple models of long-term
average surface currents in the Caribbean. This
pattern was directly contradicted by the known
pattern of spread of the Diadema pathogen in this
region [50] suggesting that, because the pathogen 
was presumably passively dispersed, even a model 
of passive dispersal requires more detailed
hydrodynamics than that used by Roberts [44].
Cowen et al. [22] built a more complex physical model
of circulation in the eastern Caribbean coupled to
estimates of larval mortality and diffusion, and
predicted that the concentration of larvae falls
essentially to zero at a distance of only 140 km from
the larval source. They argued that this indicates that
substantial dispersal of larvae is unlikely, although
other studies have shown that long-distance dispersal
does sometimes occur [47–49]. The problem of
modelling the physical environment adequately is
also shown in a recent study that compared local
concentrations of coral larvae observed around
Bowden Reef (Great Barrier Reef) with concentrations
predicted from a model of dispersal using the local
hydrography [51]. Coral larvae are passively

TRENDS in Ecology & Evolution Vol.17 No.9  September 2002

http://tree.trends.com

426 Review

TRENDS in Ecology & Evolution 

• Releasing of egg or
larva: when, where

• Maternal investment

• Starvation?

• Predation

• Cues for suitable
habitat

• Predation

• Physical processes:
currents, structures
of water mass

• Larval behaviour: swimming,
sensory capabilities

• Cues for suitable
habitat

?

Fig. 1. Factors affecting larval dispersal. The path taken by a larva might lead to it returning to the
natal reef or dispersing to a more or less distant site. The path taken is determined by a mix of factors,
which act synergistically over the larval period to determine the dispersal of each member of a larval
cohort. Where and when eggs or larvae enter the water column, their quality, and the food resources
and predators that they encounter will affect survival, condition and growth rates. Condition and
growth rates will determine the development of swimming and sensory abilities, and these will
determine how larvae respond to the physical environment and to any cues from reefs. We can predict
considerable variation among cohorts and locations in the paths travelled, as well as among species,
but we cannot yet do much more. We lack information on most of the factors operating.

Although oceanographers cannot yet specify the patterns of water
movement in close proximity to complex topography, such as reefs,
there is a range of small to mesoscale oceanographic features that
provide opportunities for predictable transport of larval fish.
• Eddies (rotary currents) can form downstream of reefs and can

aggregate buoyant particles and prevent broad dispersal. Within such
eddies, reef fish larvae have been found in large abundance at some
locations (e.g. Florida Keys [a], Hawaii [b] and Johnston Atoll [c]) but
not at others (e.g. Myrmidon Reef, Great Barrier Reef [d]). Such eddies
also vary in their persistence (e.g. a few days at Johnston Atoll or
several months in the Florida Keys), further suggesting that the
influence of eddies on larval dispersal will vary.

• Upwelling systems are probably important if the larvae exhibit
vertical migrations. An upwelling occurs usually where winds 
move superficial water in an offshore direction and as a result deep
water flows in an opposite onshore direction. By descending in the
water column, advected larvae can be returned to the reefs.
However, because reef fish species vary in vertical migration
behavior (Box 2), the effects of upwellings on patterns of larval
dispersal are species-specific. Moreover, because similar physical
processes can result in downwellings (when superficial waters 
move onshore), an inflexible larval response to depth can also 
result in advection.

• Surface slicks resulting from convergence zones created by complex
interactions involving the thermocline, internal waves, opposing
currents and winds might also affect larval dispersal [e]. Converging
currents can accumulate organisms around slicks that flow in the
direction of the wind. Such circumstances can act to accumulate
diffused larvae offshore into aggregate lines that flow onshore [e], 

or alternatively prevent diffusion of eggs and larvae and move them
from onshore to offshore localities.

• Currents flowing along the coast can disperse larvae of a given
population along the coast reinforcing advection or can generate
peripheral eddies that entrain fish larvae and favor retention [f–h].
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dispersed at the surface, yet this study found virtually
no correlation between these two data sets. Modelling
is an important technique that is capable of yielding
novel insights, but we need to be aware of the
limitations of models, and of our limited knowledge of
the factors that they model.

Other approaches
The temporal link between local production of
propagules (spawning) and subsequent recruitment
has also been used to deduce the pattern of dispersal
leading to recruitment at particular locations. The
rationale for this approach is that, if larvae are
exogenous, local patterns of spawning will not be
correlated with local recruitment, whereas if larvae
are self-recruited, patterns of spawning and
recruitment should be coupled [52]. Although the
relation between spawning and recruitment has been
explored extensively [53], using this relationship to
infer the pattern of dispersal is novel [52].

Examples showing coupling or lack of coupling
between spawning and recruitment are broadly
reported [53]; however, what these tell us about
dispersal is unclear. Coupling of spawning and
recruitment patterns might result when spawning is
synchronized closely over a broad spatial scale, even if
recruits are dispersed widely. Such large-scale
synchrony in reproduction might occur for reef fish
that spawn at similar times (i.e. specific moon phases
[54]) at many locations. Neither does decoupling
inevitably imply broad dispersal. Danilowicz and 
Sale [55] used a model to show how plausible patterns
of mortality during larval life can decouple local
production and subsequent recruitment even when
recruitment is entirely endogenous. The presumed

link between spawning and recruitment will not
easily advance our understanding of dispersal.

Observations of colonization of previously
unoccupied areas (e.g. Eastern Pacific localities by
Indo–Pacific species during El Niño events [56]), or of
recruitment of fish after rafting in association with
floating objects [57], demonstrate larval advection
and prove the existence of OPEN POPULATIONS. Because
of the long distances travelled in these cases, these
events might have an important role in determining
genetic connectivity and/or processes of speciation in
reef fish. However, because they are relatively rare
events, they probably do not contribute markedly to
the replenishment of fish populations. Conversely, the
existence of endemic species on remote archipelagos
confirms that at least some fish populations achieve
sufficient local recruitment to maintain their
densities [58]. Of course, endemic species might still
be structured as open systems within the local region
in which they occur [52].

Passive drifters have been used extensively to
suggest potential trajectories of larval transport.
They reveal considerable complexity in the paths that
are possible when several drifters are released
simultaneously at a single site. However, because
such devices ignore larval behaviors, and because
these behaviors are considerable in many species
(Box 1), drifter studies seem unlikely to be useful in
defining paths travelled by larvae.

Conclusion and future directions
Among reef fish ecologists, the perception of reef fish
populations as broadly open systems has shifted to a
currently widespread emphasis on the retention of
larvae at natal reefs. This dramatic shift has been
made with important but as yet limited new evidence.
Our review of evidence concerning reef fish dispersal
shows that these limitations are serious and that, at
present, the answer to whether reef fish populations
are open or closed must be regarded as unknown. We
can go further and state with confidence that there is
not one answer. Different species in different places
will be structured into more or less open populations
depending on the capabilities of the species, the
physical features of its environment, and the spatial
and temporal scales at which the question is posed.

Our uncertainty about patterns of larval dispersal
reveals a crucial gap in knowledge of coral reef fish.
Apart from the intrinsic interest in the capabilities of
these animals, if marine protected areas (MPAs) are
to have any impact on conserving these species, or the
management of fisheries based upon them, we need 
to know more about the spatial and temporal scales 
at which populations function, and the extent of
connectivity among populations. Otherwise, there 
is no biological basis on which to decide the size,
positioning, or number of MPAs that are required to
protect these species.

In addition to new work using microchemical,
genetic and other novel tagging approaches for
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Advection: the passive dispersal of larvae away from a natal site due to entrainment in a moving
parcel of water caused by a physical process such as a current, or an upwelling.
Closed population: a population that receives its recruitment primarily as larvae produced from
spawning activity by its own residents.
Closure: a population achieves closure when the life cycles of its members are such that
offspring remain within it, or return to become members of the reproductive unit.
Connectivity: the demographic connection maintained between neighboring populations of a
species due to the migration of individuals (particularly dispersing larvae) between them.
Convergence zone: a zone in a water body where two currents come together. It is usually
marked by a surface of complex ripples and accumulated flotsam. A downwelling region may lie
below this surface sign.
Dispersal: the movement of individual organisms away from a starting location, such as the site
where they were spawned. Dispersal may be passive or active.
Open population: a population that receives its recruitment primarily as larvae produced by
spawning in other, neighboring or distant, populations.
Recruitment: the addition of a new cohort to a population, or the new cohort that was added.
Magnitude of recruitment depends on the time, and life history stage at which it is recorded.
Retention: avoidance of dispersal from a natal site either due to specific hydrographical
features, or by active behavioral processes used by the larvae.
Self-recruitment: the new cohort added to a population (recruitment) consists largely, or entirely
of larvae spawned by that population. Sometimes termed endogenous recruitment.
Settlement: the action of moving from the pelagic realm of open water to the demersal habitat.
Settlement occurs at a distinct time in the life cycle of coral reef fish, and is usually closely
associated with metamorphosis from larval to juvenile form.
Thermocline: the layer of a water body exhibiting a pronounced temperature gradient, and
separating the upper epilimnion from the lower hypolimnion.

Glossary
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defining the scales (both in space and time) and
extent of larval dispersal among populations, major
efforts are required to expand our knowledge of the
behaviors that are actually used, and the cues to
which reef fish respond during their larval period.
The work completed is a good beginning, and the
challenges in extending it are many, but scientists

and funding agencies must see this as a crucial area of
research and support it accordingly. Finally, we need
to encourage multi-investigator, multidisciplinary
approaches combining physical oceanography, larval
behavior, tagging studies and sophisticated modelling
approaches, because this gap in knowledge cannot be
filled by one approach alone.
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